首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
Using GPS technology and community research methods for plant communities, we investigated the distribution patterns of aquatic plant communities in the high plateaus of the Napahai Wetlands, Yunnan, China, as well as the species changes of plant communities compared with that of 24 years ago since 2005. We found that the types and numbers of aquatic plant communities have changed. Some pollution-tolerant, nutrient-loving plant communities such as Scirpus tabernaemontani, Zizania caduciflora, Myriophyllum spicatum, and Azolla imbricata flourished, while the primary aquatic plant communities were reduced or even disappeared. The number of aquatic plant communities were increased from nine to 12 with the addition of two new emergent plant communities and one new floating-leaved plant community. The increase in emergent plant communities was significant. From east to west and from south to north, various types of plant communities were continuously distributed, including floating-leaved plant communities, emergent plant communities and submerged plant communities. The composition of the communities became more complicated and the number of accompanying species increased, while the percentage ratio of dominant plant species declined. In 2005, the coverage of emergent plant communities was the largest (528.42 hm2) followed by submerged plant communities (362.50 hm2) and the floating-leaf plant communities was the smallest (70.23 hm2). The variations in the distribution of aquatic plant communities in the Napahai Wetlands reflect the natural responses to the change of the wetland ecological environment. This study indicates that human disturbances have led to an inward movement of the wetland shoreline, a decrease in water quality and a reduction in wetland habitat. __________ Translated from Acta Ecologica Sinica, 2006, 26(11): 3624–3630 [译自: 生态学报]  相似文献   

2.
高原湿地纳帕海水生植物群落分布格局及变化   总被引:10,自引:0,他引:10  
肖德荣  田昆  袁华  杨宇明  李宁云  徐守国 《生态学报》2006,26(11):3624-3630
采用3S技术与植物群落研究法,对高原湿地纳帕海24a来的湿地植物群落分布格局及变化的研究结果表明:与24a前水生植物群落相比较。纳帕海水生植物群落类型、数量改变,原生群落不断减少或消失,耐污、喜富营养类群如水葱群落(Com.Scirpus tabernaemontani)、茭草群落(Com.Zizania caduciflora)、穗状狐尾藻群落(Com.Myriophyllum spicatum)、满江红(Com.Azolla imbricata)群落等大量出现;群落总数由24a前的9个增至当前的12个,其中挺水植物群落增加2个,浮叶植物群落增加1个,挺水植物群落增幅最大。由东向西、由南向北,纳帕海水生植物群落分布大致呈现出浮叶群落、挺水群落、沉水群落斑块状依次配置的水平格局规律。挺水植物群落分布面积最大,达528.42hm^2,其次是沉水植物群落,分布面积为362.50hm^2,浮叶植物群落分布面积最小,为70.23hm^2。随沉水群落、浮叶群落向挺水群落的演替,群落伴生种数量增加、优势种优势度减小、层次类型改变,群落结构变得更为复杂。纳帕海湿地水生植物群落分布格局及变化是对湿地环境变化的响应,表明了在人为干扰作用影响下,纳帕海湖岸线内移、水量减少、水质恶化等湿地水文条件的改变,致使湿地生态系统功能不断退化。  相似文献   

3.
筑坝扩容下高原湿地拉市海植物群落分布格局及其变化   总被引:1,自引:0,他引:1  
肖德荣  袁华  田昆  杨杨 《生态学报》2012,32(3):815-822
基于遥感与地理信息系统技术、结合实地调查与验证,对高原湿地拉市海筑坝扩容13a来湿地植物群落类型、物种组成、空间分布格局进行研究,对比分析筑坝扩容前后植物群落变化特征。结果表明,拉市海当前分布有水葱 (Scirpus tabernaemontani)、两栖蓼 (Polygonum amphibium) 等2个挺水植物群落,鸭子草 (Potamogeton tepperi)、菱 (Trapa bispinosa)等2个浮叶植物群落,穗状狐尾藻 (Myriophyllum spicatum)、篦齿眼子菜 (Potamogeton pectinatus)、菹草 (Potamogeton crispus)、穿叶眼子草 (Potamogeton perfoliatus)、小叶眼子菜 (Potamogeton pusillns)等5个沉水植物群落,草甸植被分布于湖周。湿地植物物种共计61种,隶属于25科、48属,物种丰富度随沉水→浮叶→挺水→草甸逐渐增加。沉水植物群落分布面积最大(615.08 hm2),其次是草甸(214.60 hm2)、浮叶植物群落(140.01 hm2),挺水植物群落分布面积最小 (9.34 hm2),群落垂直层次随沉水→浮叶→挺水呈复杂化的趋势。筑坝13a来,拉市海植物群落类型从单一的沉水型植物群落发展成为由沉水、浮叶、挺水型组成的、水平空间多样化配置的湿地植被系统,其中穗状狐尾藻、篦齿眼子菜、小眼子菜等植物群落在筑坝蓄水13a后没有发生演替得以保留,而扇叶水毛茛(Butrachium bungei)、马来眼子菜(Potamogeton malaianus)和轮藻(Chara spp.)群落发生演替而消失。研究掌握了筑坝扩容下拉市海湿地植物群落分布格局及其变化特征,为科学评估筑坝蓄水对湿地生态系统的影响提供了基础性数据,同时也为水文改变下高原湿地生态系统的保护、管理以及资源可持续利用提供了一定的理论依据。  相似文献   

4.
白洋淀水生植被初步调查   总被引:14,自引:0,他引:14  
通过野外实地调查对白洋淀水生植被的物种组成、群落类型、分布格局及物种生物量进行了初步研究.结果表明:白洋淀湿地共有水生植物39种,隶属于21科32属,其中挺水植物16种,沉水植物14种,浮叶根生植物6种,漂浮植物3种.与20世纪90年代初相比,水生植物共减少了9种,群落类型也由原来的16种变为现在的13种,大面积轮叶黑藻、大茨藻等优势群落消失,物种分布格局也发生了巨大变化.群落生物量较1980年大幅下降.人工养殖、污染物随意排放和水位的变化可能是造成白洋淀湿地退化、水生植被格局发生巨大变化的主要原因.  相似文献   

5.
湿地植被对北京地区蜻蜓生态分布的影响   总被引:1,自引:0,他引:1  
王辰  高新宇  刘阳  张正旺 《生态学报》2007,27(2):516-525
蜻蜓目(Odonata)昆虫是半变态类(Hemimetabola)昆虫,它的一生经过卵、若虫和成虫3个阶段。和其他水生昆虫一样,蜻蜓目昆虫是淡水生物群落的重要组成部分,对淡水生态系统起到重要作用。蜻蜓目昆虫在其生活史中,取食、交配等活动离不开水生植物和水域附近的植被。为了研究蜻蜓栖息生境中的湿地植被特征对蜻蜓生态分布影响,对北京地区不同湿地类型的17块样地中296个样方分布的蜻蜓种类、多度以及湿地植被的特征和植物多样性进行调查,记录到蜻蜓6科26属36种,维管植物40科99属150种。应用TWINSPAN对蜻蜓种类和样地进行双向聚类分析,所有样地被划分成为四组。同时,将植被特征因子和湿地植物的多样性视为影响蜻蜓数量及分布的因子进行CCA分析。结果表明:湿地植物的丰富度与植物群落结构的完整性是影响蜻蜓分布的主要因素;各湿地植被特征因子对于蜻蜓生态分布的影响不一,依贡献率由大及小依次为浮水植物层盖度、湿生植物盖度、G1eason丰富度指数、沉水植物层盖度、G-F多样性指数、挺水植物层盖度。并且首次应用G-F多样性指数分析湿地植物的多样性。对于蜻蜓栖息地的保护、城市中对于湿地的兴建和改造也提出了相关保护建议。  相似文献   

6.
Based on phytosociological data, a polythetic divisive classification technique resulted in the delineation of eight broad vegetation types in the back-swamp areas of the Maunachira River System of the Okavango Delta, Botswana. A detrended correspondence analysis indicated that water depth was the major environmental factor influencing the distribution of submerged, floating-leaved and tall, emergent species dominated communities. The remaining communities, with relatively distinct boundaries between each of them, were of short emergent species assemblages rooted in peat deposits with a water depth of less than 0.7 m. Their species composition was not related to water depth, conductivity, pH, redox potential, water temperature or total nitrogen or phosphorus concentrations in the water. The relationship between the present day wetland plant community composition and its environment may be masked by long term, biotic, insulating processes such as the accumulation of resources during peat formation and clonal plant growth. This insulation process does not lead necessarily to long term community stability as has been previously suggested (Mitsch and Gosselink 1986).  相似文献   

7.
滇西北高原纳帕海湖滨湿地退化特征、规律与过程   总被引:1,自引:0,他引:1  
尚文  杨永兴 《应用生态学报》2012,23(12):3257-3265
采用双向指示种分析(TWINSPAN)和典范对应分析(CCA)方法,研究了滇西北高原纳帕海湖滨湿地退化特征、规律与过程.结果表明: 纳帕海湖滨湿地植物群落可以划分为4个群丛,群落演替规律为水生植物群落→沼泽植物群落→沼泽化草甸植物群落→草甸植物群落.随植物群落演替,群落盖度、密度、多样性指数、物种丰富度和地上生物量均增大,群落高度减小;植物水分生态型演替规律为水生植物→沼生植物→湿生植物→中生植物.随群落演替,湿地水体矿化度、硬度和碱度均降低,氨氮和总磷含量升高,总氮和硝态氮含量变化不明显;土壤pH、有机质和全氮含量逐渐降低,全磷和全钾含量逐渐升高,速效氮和速效磷含量先增大后减小.CCA分析表明,群落结构和物种组成主要受水分梯度影响,土壤pH、全磷和湿地水的总氮、氨氮对湿地植物物种分布和群落演替影响显著.  相似文献   

8.
本研究对邛海湖湿地水生维管植物种类及分布状况进行了调查.结果表明,邛海湖湿地现有水生维管束植物77种,隶属于25科50属.其中,蕨类植物5种,隶属2科3属;被子植物72种,隶属23科47属.从植物生态类型和生活型方面来划分,邛海水生维管束植物可分为湖区水生维管植物、河口滩涂植物和湿生植物三种类型.它们主要分布在湖泊的北面、西面和南面.区系分析结果表明,邛海水生维管束植物共有7种分布类型,其中以世界性分布型植物种最多.邛海湿地自然着生的水生植物群落破坏严重,挺水植物以上群落基本消失,浮水植物和沉水植物分布区锐减,分布深度退缩,分布密度减小.针对邛海湿地水生维管束植物存在问题,笔者提出了相应的解决方法和建议.该研究为邛海湿地的恢复和重建提供了理论依据.  相似文献   

9.
研究了物种库限制与生态位限制在湖滨湿地植物分布格局形成过程中的相对重要性。在龙感湖湖滨湿地具有明显水位梯度的湿生植 物区、挺水植物区和沉水植物区采集种子库土样, 采用幼苗萌发法确定了不同水位区种子库的物种成分;并将不同水位区的种子库土样分别置于0、25和50cm3个水位下萌发和生长, 45和90d后比较不同取样区种子库在不同水位处理下所建立的植物群落的异同。结果表明, 不同取样区的种子库物种成分有显著差异, 沿水深梯度呈现明显的带状分布格局。水位处理实验表明, 0cm水位条件下的群落主要由湿生植物和挺水植物组成, 而25和50cm水位下只有沉水植物, 表明不同功能群的物种对水深有不同的耐受力, 生态位限制是决定湿地植物分布格局的关键因子。同时, 挺水植物区的种子库置于沉水条件下, 以及沉水植物区的种子库置于0cm水位下都只能形成极为简单的植物群落, 表明物种库限制对湿地植物群落的形成同样具有显著影响。研究表明, 湿地植物的群落构成与分布格局是由生态位限制和物种库限制共同决定的, 两者的相对重要性可能取决于水体的稳定性。  相似文献   

10.
The macro-invertebrates associated with eight species of emergent, floating-leaved and submerged macrophytes were recorded in May-June 1979. The plant species were: Phragmites australis, Sparganium erectum, Typha angustifolia, Polygonum amphibium, Ceratophyllum demersum, Elodea sp., Myriophyllum spicatum and Nitella mucronata.All macrophytes had a high number of macro-invertebrate species in common; however, some animals were also species-specific, particularly those occurring on the emergent plants. As regards the food source and feeding mechanism, the detritivores, periphytiscrapers and omnivores predominated, followed by predatory carnivores. The seston-filtrators also form a significant part of the community biomass. The macrofaunal distribution depended strongly on colonizable plant surface area and vegetation density. The macrofaunal communities of the Elodea, Ceratophyllum and Phragmites stands contributed mainly to the lake's carbon cycle. Being poorly represented by herbivores, the macro-invertebrate communities will affect the lake's primary production only slightly.  相似文献   

11.
Although zonation patterns of the standing vegetation along a water depth gradient in wetlands have been well described, few studies have explored whether such patterns also occur in the seed bank. This study examined patterns of the seed bank along a water depth gradient in three vegetation types (submerged zone, floating-leaved zone, and emergent zone) of a subtropical lakeshore marsh, Longgan Lake, China. Submerged zone is the deepest water and never exposed its soil to air, and was dominant by submerged species; floating-leaved zone is waterlogged soil even during drawdown and was dominant by Nelumbo nucifera; emergent zone is rarely exceeded 1 m water depth during the wet season (summer and autumn), and the marsh soil was usually exposed to air during drawdown (winter and spring), and is dominant by Zizania latifolia, Polygonum hydropiper and Scirpus yagara. It was found that many species were ubiquitous in the seed bank. Frequency of distribution and densities of the dominant species, however, varied significantly from zone to zone. A total of 22 species was recorded in submerged zone, 20 in floating-leaved zone, and 29 in emergent zone. Germinated seedling density was 1,580, 8,994 and 20,424 seedlings m−2 in submerged zone, floating-leaved zone, and emergent zone, respectively. Submerged and floating-leaved species were significantly abundant in the submerged zone, while the emergent species were found predominantly in the emergent zone. A fern species, Ceratopsis pterioides, was the most abundant seedling in seed banks from all three zones. A TWINSPAN dendrogram and CCA ordination diagram clearly showed separation of species among sites with the emergent zone being well separated from the submerged zone and floating-leaved zone, thus revealing marked zonal patterns in species distributions in the seed bank. This pattern of zonation reflected the pattern in the standing vegetation.  相似文献   

12.
A vast ecosystem of wetlands and lakes once covered the Mesopotamian Plain of southern Iraq. Widespread drainage in the 1990s nearly obliterated both components of the landscape. This paper reports the results of a study undertaken in 1972–1975 on the vegetation of the wetlands prior to drainage and provides a unique baseline for gauging future restoration of the wetland ecosystems in Mesopotamia. Five representative study sites were used to assess the flora, three of which were wetlands. A total of 371 plant species were recorded in the five sites, of which approximately 40% represent obligate or facultative wetland species. The wetland vegetation was classified into five major physiognomic forms (submerged, floating, herbaceous tall emergent, herbaceous low emergent and woody low emergent), which was further subdivided into 24 fresh and halophytic communities. Water levels greatly fluctuated across the different types of wetlands, and mean surface water depth ranged from below to greater than 2 m above the sediment surface, reflecting permanently, seasonally or intermittently wet habitats. Aboveground biomass was also highly variable among the communities. The Phragmites australis community, which was the most extensive community type, had the greatest biomass with an average value of approximately 5,000 g m−2 in summer. Distribution and community composition were largely controlled by water levels and saline-freshwater gradients. Canonical correspondence analysis showed that salinity and water depth were the most important factors to explain species distribution. Environmental variables related to soil salinity separated halophytic species in woody low emergent and herbaceous low emergent forms (Tamarix galica, Cressa cretica, Alhagi mannifera, Aeluropus lagopoides, Juncus rigida, and Suaeda vermiculata) from other species. Their habitats were also the driest, and soil organic matter content was lower than those of other species. Habitats with deepest water were dominated by submerged aquatic and floating leaved species such as Nymphoides peltata, Ceratophyllum demersum, and Najas armata. Such diverse environmental conditions in the Mesopotamian wetland would be greatly affected by evapotranspiration, river water inputs from north, ground water inputs, local soil conditions, and a tide or seiche-controlled northward transgression of water from the Gulf. These environmental conditions should be considered in restoration plans if plant communities existed in the mid-1970s are to be part of the desired restoration goals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Aquatic plant communities in arid zone wetlands underpin diverse fauna populations and ecosystem functions yet are relatively poorly known. Erratic flooding, drying, salinity and turbidity regimes contribute to habitat complexity, creating high spatial and temporal variability that supports high biodiversity. We compared seed bank density, species richness and community composition of aquatic plants (submergent, floating-leaved and emergent) among nine Australian arid zone wetlands. Germinable seed banks from wetlands within the Paroo and Bulloo River catchments were examined at nested scales (site, wetland, wetland type) using natural flooding and salinity regimes as factors with nondormant seed density and species richness as response variables. Salinity explained most of the variance in seed density (95%) and species richness (68%), with flooding accounting for 5% of variance in seed density and 32% in species richness. Salinity-flooding interactions were significant but explained only a trivial portion of the variance (<1%). Mean seed densities in wetlands ranged from 40 to 18,760 m−2 and were highest in wetlands with intermediate levels of salinity and flooding. Variability of densities was high (CVs 0.61–2.66), particularly in saline temporary and fresh permanent wetlands. Below salinities of c. 30 g l−1 TDS, seed density was negatively correlated to turbidity and connectivity. Total species richness of wetlands (6–27) was negatively correlated to salinity, pH and riverine connectivity. A total of 40 species germinated, comprising submergent (15 species), floating-leaved or amphibious (17 species), emergent (6 species) and terrestrial (6 species) groups. Charophytes were particularly important with 10 species (five Chara spp., four Nitella spp. and Lamprothamnium macropogon), accounting for 68% of total abundance. Saline temporary wetlands were dominated by Ruppia tuberosa, Lamprothamnium macropogon and Lepilaena preissii. Variable flooding and drying regimes profoundly altered water quality including salinity and turbidity, producing distinctive aquatic plant communities as reflected by their seed banks. This reinforces the importance of hydrology in shaping aquatic biological communities in arid systems.  相似文献   

14.
滇西北高原典型退化湿地纳帕海植物群落景观多样性   总被引:7,自引:1,他引:7  
采用时空替代法,运用3S技术,结合植物群落实地调查,研究了云南西北高原典型退化湿地纳帕海的植物群落景观多样性格局。结果表明:人为干扰加速了纳帕海原生沼泽、沼泽化草甸植物群落景观向草甸、垦后湿地植物群落景观演替,湿地环境不断丧失,湿地功能逐渐退化;不同演替阶段沼泽植物群落景观多样性在空间上呈现出不同的格局是对湿地环境变化的响应,体现了湿地环境变化与功能现状,并在一定程度上反映了人为干扰的类型与强度。  相似文献   

15.
16.
不同人为干扰下纳帕海湖滨湿地植被及土壤退化特征   总被引:5,自引:0,他引:5  
唐明艳  杨永兴 《生态学报》2013,33(20):6681-6693
以滇西北高原纳帕海湖滨退化湿地为研究对象,对比分析了人为隔断水源补给、牛羊过度放牧和家猪拱地三种人为干扰下湿地植被和土壤退化特征。结果表明:三种干扰方式下,纳帕海湖滨湿地植物群落类型多样性、物种丰富度、物种数、Shannon-Wiener指数、沼生植物重要值以及土壤有机质、全氮、速效氮、含水率、毛管孔隙度变化规律为:人为隔断水源补给>牛羊过度放牧>家猪拱地,而土壤容重和全钾含量变化规律完全相反。Pearson相关性分析表明,不同人为干扰下相同土壤指标之间相关性质和相关强度不同;CCA分析表明植物群落种类组成和分布与土壤含水率和全磷含量显著相关。以原生湿地样点为对照,人为隔断水源补给、牛羊过度放牧和家猪拱地样带土壤退化指数分别为-7.40%、-14.53%、-45.01%。认为纳帕海湖滨湿地退化是三种干扰协同作用结果,但作用程度不同,其顺序为家猪拱地>牛羊过度放牧>人为隔断水源补给。  相似文献   

17.
Availability of macrophyte habitat is recognized as an important driver of aquatic insect communities in peatland drainage ditches; however, eutrophication can lead to the decline of submerged vegetation. While emergent vegetation is able to persist in eutrophicated ditches, vegetation removal, carried out during ditch maintenance, can reduce the availability of this habitat. In this study, we applied the landscape filtering approach to determine whether the absence of emergent vegetation is a habitat filter which structures aquatic insect communities in peatland drainage ditches under different trophic conditions. To this end, a field study was carried out in one mesotrophic (Naardermeer) and one eutrophic (Wormer and Jisperveld) peatland in the province of North Holland, The Netherlands. We assigned life history strategies to insect species and applied linear mixed models and redundancy analyses to taxonomic and functional aquatic insect community data. Our results indicate that while differences between peatlands primarily determine the species pool within each wetland, emergent vegetation acted as a secondary filter by structuring functional community composition within ditches. The eutrophic peatland was dominated by insects adapted to abiotic extremes, while species with good dispersal abilities were strongly related to emergent vegetation cover. This study demonstrates the applicability of life history strategies to provide insight into the filtering of species due to availability of emergent macrophyte habitat. To ensure greater diversity of insect communities in ditch habitats, it is recommended that some vegetation be spared during maintenance to leave patches from which insect recolonization can occur.  相似文献   

18.
Wetlands Ecology and Management - Hybrid cattails (Typha x glauca) are an invasive, emergent aquatic plant that often form monodominant stands, which can alter wetland vegetation structure and...  相似文献   

19.
Summary Mapping the vegetation of the littoral zone of different types of aquatic habitats in the region of Valdivia (Chile) submerged Egerietum densum, the emergent Sagittario-Alismetum and the Scirpetum californiae were found. In the littoral zone of the banados (i.e. lakes) formed by inundation after subsidence the submerged Egerietum densum, the floating-leaved Polygono-Jussiaetum and the emergent Juncetum procerii; the analyzed pond of Mehuin contained the Callitrichetum stagnalis chilensis and the artificial ponds close to La Union the Lemno-Azolletum. The caloric values of 18 hydrophytes showed a decline from the large emergent hydrophytes (3 818 cal/g) to the submerged (2 907 cal/g) and there was also a decrease from the free-floating (3 652 cal/g) to the floating-leaved (3 364 cal/g) and to the submerged plants. In the most eases high caloric values correspond to a high content of lignin (large emergent hydrophytes) or lipids (floating-leaved plants).We thank Mrs. Bölke and Mr. Delgado for technical help and the Universidad Austral de Chile, Valdivia for fluancial support.  相似文献   

20.
The effects of floating-leaved, submerged and emergent macrophytes on sediment resuspension and internal phosphorus loading were studied in the shallow Kirkkojärvi basin by placing sedimentation traps among different plant beds and adjacent open water and by sediment and water samples. All the three life forms considerably reduced sediment resuspension compared with non-vegetated areas. Both among submerged (Ceratophyllum demersum, Potamogeton obtusifolius, Ranunculus circinatus) and emergent (Typha angustifolia) plants, resuspension rate was on average 43% of that in the adjacent open water, while within floating-leaved plants (Nuphar lutea) the corresponding value was 87%. The effects of submerged and emergent vegetation increased in the course of the growing season together with increasing plant density. Among floating-leaved vegetation, such seasonal trend in resuspension effects was not observed. Compared with the non-vegetated area, floating-leaved, submerged and emergent plants reduced internal phosphorus loading on average by 21, 12 and 26 mg m−2 d−1, respectively. The effects of floating-leaved plants on resuspension-mediated internal phosphosrus loading were thus comparable to the effects of the other two life forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号