首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

2.
Growth inhibition of Crithidia fasciculata by 4-nitroquinoline 1-oxide (NQO) was observed in defined and complex media at 28 C. Aromatic amino acids, cysteine, and nicotinic acid, among several other substances, were ineffective in overcoming NQO toxicity. Dicoumarol and bovine albumin reversed NQO inhibition. While bovine albumin probably acted by the extra-cellular binding of NQO, dicoumarol inhibited the activity of DT-diaphorase, which reduces NQO to 4-hydroxyaminonitroquinoline 1-oxide (HAQO). The DT-diaphorase from C. fasciculata had the same characteristics as the enzyme from rat liver. The specific protection by dicoumarol against NQO inhibition suggests that HAQO is the active toxic substance for C. fasciculata.  相似文献   

3.
S Sutou 《Mutation research》1973,18(2):171-178
Chinese hamster cells treated with 4-nitroquinoline 1-oxide (4NQO) developed diplochromosomes, indicating the induction of endoreduplication. The maximum ratio of diplochromosomes, about 3% of total mitoses, was reached 27 h after treatment with a concentration of 0.5 μg/ml (2.6·10?6M) for 6 h. Various chromosomal aberrations other than changes in ploidy were observed in diplochromosomes. Spiral structures observed in diplochromosomes and the binding of 4NQO to proteins are discussed here.  相似文献   

4.
Cultured mouse L5178Y cells were exposed to several carcinogenic and antitumor agents. After exposure to one of the agents, the cells were label with [3H]-thymidine for 20 min, and the DNA was subjected to alkaline sucrose gradient centrifugation immediately or after a chase period. This led us to classify the agents into 3 groups: (1) UV, 4-nitroquinoline-1-oxide (4NQO), N-methyl-N′-nitrosoguanidine (MNNG), nitrogen mustard and Mitomycin C. These were characterized by 20-min DNA labeling patterns showing the formation of small DNA and by the slowing down of their subsequent elongation. Replicated DNA strands would have gaps where “damage” was present on the parental strands. Subsequently, gap-filling replication would occur with or without repairing damage. (2) γ-rays. The 20-min DNA labeling profile displayed a larger size of DNA pieces and the subsequent elongation of this DNA was slightly affected. This probably due to a preferential depression of initiation DNA replication. (3) Methyl methanesulfonate (MMS) and low temperature (28°). The 20-min DNA labeling patterns were qualitatively similar to, but quantitatively different from those of non-irradiated control. The rate of DNA elongation was slightly retarded.  相似文献   

5.
Human lymphocyte were treated in G1 with 4-nitroquinoline-N-oxide (4NQO) and methyl methanesulfonate (MMS) and then incubated in the presence or absence of cytosine arabinoside (ara-C). There was an increase in aberration frequency in those cells incubated with ara-C compared with those treated with 4NQO or MMS alone. This increase was restricted to chromosome-type aberrations. When cells were treated in G2 with 4NQO and then incubated with ara-C until fixation, there was an increase in deletions compared with cells treated with 4NQO alone. No exchange aberrations were observed following any treatment even when deletion frequencies were high, as in the case with 4NQO plus ara-C treatment. These results suggest that ara-C can inhibit the repair of DNA damage induced by 4NQO and MMS that is converted into aberrations. They also show that the terms “S-dependent” and “S-independent” used to describe the modes of action of chemical clastogens are not valid.  相似文献   

6.
KB cells and L cells were treated with methylmethanesulfonate (MMS) or 4-nitroquinoline-1-oxide (4 NQO) and the resulting damage to DNA and its repair were examined by sedimentation in an alkaline sucrose gradient. The sedimentation profiles obtained were found to be the resultant of a complex interrelationship between drug dosage, duration of the lysis period and the repair capacity of the cells. A systematic study of these variables was made which led to a plausible and useful interpretation of the sedimentation profiles. Both drugs produce two kinds of DNA modifications which show up as a single-strand breaks but affect the sedimentation profile in characteristic ways. One of these modifications which is quite alkali-labile can be studied using a 30-min lysis period. The other modification is less alkali-labile and can be studied using a long lysis period. Both KB cells and L cells can repair the former type of damage but only KB cells can repair the latter type of damage.  相似文献   

7.
This study was undertaken to investigate the genomic instability on blood cells during 4-nitroquinoline 1-oxide (4NQO)-induced rat tongue carcinogenesis by means of single cell gel (comet) and micronucleus assays. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution through their drinking water for 4, 12, and 20 weeks. Ten animals were used as negative control. Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure, genetic damage was found in blood cells as depicted by the mean tail moment and an increase of micronucleated polychromatic erythrocytes. After 12 and 20 weeks treatment, the same picture occurred, being the strong effect observed in the micronucleus induction. These periods correspond to pre-neoplastic lesions and well-differentiated squamous cell carcinomas, respectively. Taken together, our results support the idea that genomic instability on blood cells appears to be associated with the risk and progression of oral cancer, being a reliable tool for detecting early systemic conditions of malignancy.  相似文献   

8.
Primary cultures of rat urothelial cells were exposed to hydroxyurea, [3H]thymidine, and 4-nitroquinoline 1-oxide (NQO) or N-hydroxy-4-aminoquinoline 1-oxide (HAQO) in a serum-free media for 2 h; unscheduled DNA synthesis (UDS) was measured by autoradiography. Both NQO and HAQO produced unscheduled DNA synthesis. Dicumarol, an inhibitor of NQO nitroreductase, inhibited the activity of NQO and, to a lesser extent, HAQO. Pyrophosphate, an inhibitor of seryl-AMP synthetase, inhibited the activity of both compounds. Neither dicumarol nor pyrophosphate, under similar experimental conditions, inhibited the activity of N-hydroxy-N-2-acetylaminofluorene (N-OH-AAF). These results support the idea that nitro-reductase and seryl-AMP synthetase may be involved in the activation of NQO.  相似文献   

9.
The influence of caffeine post-treatment on sister-chromatid exchanges (SCE) and chromosomal aberration frequencies on Chinese hamster cells exposed to a variety of chemical and physical agents followed by bromodeoxyuridine (BrdUrd) was determined. After 2 h treatment, N-methyl-N′-nitrosoguanidine (MNNG) and cis-platinum(II)diamine dichloride (cis-Pt(II)) induced a 7- and 6-fold increase in SCE, respectively, while 4-nitroquinoline-1-oxide (4NQO), methyl methanesulfonate (MMS), proflavine, and N-hydroxyfluorenylacetamide (OH-AAF) caused a 2–3-fold increase in SCE compared to controls treated with BrdUrd alone. Ultraviolet light doubled the number of SCE. The lowest increase of SCE was obtained with bleomycin and X-irradiation. Caffeine post-treatment caused a statistically significant increase in the frequency of SCE induced by UV- and X-irradiation as well as by 4NQO and MMS but did not alter the number of SCE induced by MNNG, cis-Pt(II), proflavine, OH-AAF, and bleomycin.

Caffeine post-treatment increased the number of cells with chromosomal aberrations induced by MNNG, cis-Pt(II), UV, 4NQO, MMS, and proflavine. With the exception of proflavine, these agents are dependent on DNA and chromosome replication for the expression of the chromosomal aberrations. Caffeine enhancement of cis-Pt(II) chromosomal aberrations occurred independently of the time interval between treatment and chromosome preparations. Chromosomal damage produced by bleomycin and X-irradiation, agents known to induce chromosomal aberrations independent of “S” phase of the cell cycle, as well as the damage induced with OH-AAF was not influenced by caffeine post-treatment.

The enhancement by caffeine, an inhibitor of the gap-filling process in post-replication repair, of chromosomal aberrations induced by “S” dependent agents, is consistent with the involvement of this type of repair in chromosomal aberration formation. The lack of inhibition of SCE frequency by caffeine indicates that post-replication repair is probably not important in SCE formation.  相似文献   


10.
The medium-term tongue carcinogenesis assay is a useful model for studying oral squamous cell carcinomas phase by phase. The present study aimed to investigate mutations in exon 2 of gene p16CDKN2A during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide (4NQO) using direct DNA-sequencing method. A total of 30 male Wistar rats were treated with 4-nitroquinoline 1-oxide (4NQO) in drinking water for 4, 12, and 20 weeks at 50 ppm dose. Ten animals were used as negative control. No histopathological changes in tongue epithelia were observed among controls or in the group treated for 4 weeks with 4NQO. Following 12-week treatment, hyperplasia and epithelial dysplasia were found in mild and moderate forms. At 20 weeks, the tongue presented moderate and/or severe oral dysplasia and squamous cell carcinoma, with squamous cell carcinoma in the majority of animals. No mutations were found in any experimental period evaluated that corresponded to normal oral mucosa, hyperplasia, dysplasia and squamous cell carcinomas. Taken together, our results suggest that p16CDKN2A mutations in exon 2 are not involved in the multistep tongue carcinogenesis of Wistar rats induced by 4NQO.  相似文献   

11.
Dose-response curves were compared for deletions [ColBR (resistant to colicin B) mutations being more than 80% deletions] and base changes (reversion of argFam to prototrophy argplus) induced in the same set of E. coli strains (wild-type for DNA repair, uvrA-, polA- and recA-) by N-methyl-N'-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate (EMS), hydroxylamine (HA), 4-nitroquinoline I-oxide (4NQO), mitomycin C (MTC, UV and X-rays. All these agents induced deletions as well as base changes in the wild-type strain. Thus chemical mutagenesis differed in E. coli and bacteriophages in vitro, for HA, NTG, EMS and perhaps UV produced only point mutations in phage Tr. The patterns of deletion and base-change mutability in E. coli were surprisingly similar. (I) The recombination less recA- strain was mutable by only three (NTG, EMS, HA) of the seven mutagens for either deletions or base changes. (2) The uvrA- strain, unable to excise pyrimidine dimers, was very highly mutable by 4NQO and UV but immutable by MTC for both deletions and base changes. (3) The polA- strain, defective in DNA polymerase I due to a non-suppressible mutation, was very highly mutable by HA and highly mutable by MTC and 4NQO for both deletions and base changes but was highly mutable only for deletions by UV and X-rays, remaining normally mutable by the other agents for both deletions and base changes despite its high sensitivity to their inactivating action. We conclude that errors in the recA-dependent repair of induced DNA damage (after 4NQO, MTC, UV and X-rays) or errors in replication enhanced by damage to the replication system or to the template strands (after NTG, EMS, and HA) give rise to deletions as well as to base changes. From a comparative analysis of 14 dose-response curves for deletions and base changes, we conclude that the order of mutagenic efficiency relative to killing is (EMS, NTG) greater than (UV, 4NQO) greater than HA greater than (X-rays, MTC), and that X-rays, 4NQO, HA and MTC induce more ColBR deletions than Argplus base changes, whereas UV and EMS induce ColBR deletions and Argplus base changes at nearly equal rates and the specificity of NTG is intermediate between these two types.  相似文献   

12.
When cells of a human clonal cell line, RSa, with high sensitivity to UV lethality, were treated with the mutagen, ethyl methanesulfonate, a variant cell strain, UVr-1, was established as a mutant resistant to 254-nm far-ultraviolet radiation (UV). Cell proliferation studies showed that UVr-1 cells survived and actively proliferated at doses of UV-irradiation that greatly suppressed the proliferation of RSa cells. Colony-formation assays also confirmed the increased resistance of UVr-1 cells to UV. The recovery from a UV-induced inhibition in DNA synthesis, as [methyl-3H]thymidine uptake into cellular DNA, was more pronounced in UVr-1 cells than in RSa cells. Nevertheless, there was no significant difference in the activity of UV-induced DNA repair synthesis in either cell line, as estimated by the extent of unscheduled DNA synthesis and DNA repair replication. UVr-1 cells were also more refractory to 4-nitroquinoline 1-oxide (4NQO), but the activity of DNA repair synthesis induced by 4NQO in UVr-1 cells was much the same as in the RSa cells. Both N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) sensitivity and MNNG-induced DNA repair synthesis activity in UVr-1 cells were similar to that of RSa cells. These characteristics of UVr-1 cells are discussed in the light of a previously reported UV-resistant variant, UVr-10, which had an increased DNA repair synthesis activity.  相似文献   

13.
Xeroderma pigmentosum (XP) cells are dificient in the repair of damage induced by ultraviolet irradiation. Excision-repair-deficient XP cell strains have been classified into 7 distinct complementation groups, according to results of studies on cell fusion and UV irradiation. XP cells are not only abnormally sensitive to UV, but also to a variety of chemical carcinogens, including 4-nitroquinoline-1-oxide (4NQO). Complementation analysis with XP strains from 4 different complementation groups with respect to the repair of 4NQO-induced DNA damage revealed that the classification of the strains into complementation groups with respect to 4NQO-induced repair coincides with the classification based on the repair of UV damage.  相似文献   

14.
Closed circular mitochondrial DNA in mammalian cells was degradated to the open circular form by exposure of the cells to the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 4-nitroquinoline 1-oxide (4NQO). MNNG caused more strand scission of mitochondrial DNA than 4NQO at the same concentration. The action of the carcinogens on mitochondrial DNA did not parallel that with nuclear DNA which was damaged by 4NQO more markedly than by MNNG. Mitochondrial DNA damaged by carcinogens was not repaired during 4-20 h of post-treatment incubation of the cells. Incorporation of labeled thymidine into the closed circular mitochondrial DNA, decreased by the treatment of cells with carcinogens, recovered during post-treatment incubation.  相似文献   

15.
The drug 4-nitroquinoline 1-oxide (4NQO) is a potent inhibitor of Dictyostelium discoideum spore germination. This inexpensive, water soluble drug is active at a concentration of 5 micrograms/ml (26 microM) and permeates the spore at all stages in germination. Spores subjected to 4NQO treatment exhibit an irreversible blockage of myxamoebae emergence, but spore activation, post-activation lag, and swelling are not affected. Swollen 4NQO-treated spores lose the outer two spore walls but lack the ability to degrade the innermost wall. The drug does not affect oxygen uptake during post-activation lag or swelling, and only a stage specific depression in O2 uptake is observed when control spores begin to release myxamoebae. When added early in germination, 4NQO blocks the incorporation of [3H] uracil into a cold trichloroacetic acid (TCA) insoluble fraction by 98%. However, when the drug is added midway through germination and followed by a pulse labelling period of 1 h, only 65% inhibition of RNA synthesis is observed. This lack of complete inhibition may occur because the drug requires metabolic activation; thus, new rounds of RNA synthesis may have initiated before the drug became fully activated. 4NQO also blocks the de novo expression of beta-glucosidase activity when added early in germination. Additionally, we observe that vegetative cellular slime mold cells are 100 times more resistant than spores to 4NQO-induced damage. Taken together, our results support the observation that RNA synthesis is only required for the emergence stage of germination and that dormant D. discoideum spores may lack efficient excision repair mechanisms.  相似文献   

16.
The effect of caffeine (CAF) pretreatment (during the first cell cycle) on the frequency of sister-chromatid exchanges (SCE) and chromosome aberrations induced by bifunctional(MC)- and monofunctional(M-MC)-mitomycin C, 4-nitroquinoline N-oxide (4NQO) and ethyl methanesulphonate (EMS) were examined by using a BrdU—Hoechst staining technique. When CAF was added to the cultures during the first cell cycle in the presence of BrdU and then the cultures treated with MC, M-MC, 4NQO or EMS during the second cell cycle, the effect of the CAF was synergistic, i.e., the SCE level achieved was much higher than that expected from a simple additive effect of the agents and CAF. These results do not support the concept that the process of SCE is a manifestation of CAF-sensitive post-replication repair of DNA damage (single-strand exchanges), but, instead, point to exchanges between the double-strands of the DNA duplex present in each chromatid. CAF at certain concentrations is known to significantly slow down the rate of DNA-chain growth, but not appreciably induce strand breaks. Inasmuch as CAF alone induced only a small increase in SCE rates, possible mechanisms which may induce SCE are not only related to the slowing down of the rate of DNA-chain growth, but may also involve breaks in the template strand permitting double-strand exchanges to occur. The mechanisms responsible for chemically induced SCE are also discussed.  相似文献   

17.
The aim of this study was to use the Comet assay to assess genetic damage in the direct-developing frog Eleutherodactylus johnstonei. A DNA diffusion assay was used to evaluate the effectiveness of alkaline, enzymatic and alkaline/enzymatic treatments for lysing E. johnstonei blood cells and to determine the amount of DNA strand breakage associated with apoptosis and necrosis. Cell sensitivity to the mutagens bleomycin (BLM) and 4-nitro-quinoline-1-oxide (4NQO) was also assessed using the Comet assay, as was the assay reproducibility. Alkaline treatment did not lyse the cytoplasmic and nuclear membranes of E. johnstonei blood cells, whereas enzymatic digestion with proteinase K (40 μg/mL) yielded naked nuclei. The contribution of apoptosis and necrosis (assessed by the DNA diffusion assay) to DNA damage was estimated to range from 0% to 8%. BLM and 4NQO induced DNA damage in E. johnstonei blood cells at different concentrations and exposure times. Dose-effect curves with both mutagens were highly reproducible and showed consistently low coefficients of variation (CV ≤ 10%). The results are discussed with regard to the potential use of the modified Comet assay for assessing the exposure of E. johnstonei to herbicides in ecotoxicological studies.  相似文献   

18.
Excision repair of DNA damage produced by 4-nitroquinoline 1-oxide (4NQO), a potent chemical carcinogen, was compared in a normal human amnion FL cell line and a xeroderma pigmentosum (XP) cell line unable to repair ultraviolet-induced pyramidine dimers. The main objective of this study was to investigate, by a direct assay of the loss of damage from DNA, whether DNA damage induced by 4NQO in human cells is repaired by the excision-repair system as in Escherichia coli cells. DNA was extracted from FL and XP cells treated with [3H]4NQO, hydrolyzed and subjected to radiochromatographic analysis in order to quantitate the initial formation of 4NQO damage and subsequent disappearance during post-incubation. Two peaks of stable 4NQO-quanine adducts appeared on the chromatogram, together with one peak of stable 4NQO-adenine adduct and a peak due to 4-aminoquinoline 1-oxide (4AQO) released from a labile fraction of 4NQO-guanine adduct during hydrolysis. The three kinds of stable 4NQO-purine adduct disappeared from DNA of the FL cells at almost the same rate of about 60% during 24-h post-incubation in culture medium, and 4AQO disappeared somewhat faster. In the XP cells, however, the stable adducts did not disappear from DNA, whereas about 40% of the 4AQO-releasing adduct disappeared from DNA. These findings at the molecular level quantitatively parallel the previous findings at the cellular level that the XP cells are several times as sensitive as normal cells to killing by 4NQO. These results lead to the conclusion that in human cells 4NQO-induced lethality is mainly due to the four kinds of 4NQO-purine adduct as it is in E. coli, and that the adducts are excisable by the same excision-repair mechanism that works on pyramidine dimers.  相似文献   

19.
Ischemia/reperfusion (I/R) is the most common cause of acute renal injury. I/R-induced reactive oxygen species (ROS) are thought to be a major factor in the development of acute renal injury by promoting the initial tubular damage. NAD(P)H:quinone oxidoreductase 1 (NQO1) is a well-known antioxidant protein that regulates ROS generation. The purpose of this study was to investigate whether NQO1 modulates the renal I/R injury (IRI) associated with NADPH oxidase (NOX)-derived ROS production in an animal model. We analyzed renal function, oxidative stress, and tubular apoptosis after IRI. NQO1−/− mice showed increased blood urea nitrogen and creatinine levels, tubular damage, oxidative stress, and apoptosis. In the kidneys of NQO1−/− mice, the cellular NADPH/NADP+ ratio was significantly higher and NOX activity was markedly higher than in those of NQO1+/+ mice. The activation of NQO1 by β-lapachone (βL) significantly improved renal dysfunction and reduced tubular cell damage, oxidative stress, and apoptosis by renal I/R. Moreover, the βL treatment significantly lowered the cellular NADPH/NADP+ ratio and dramatically reduced NOX activity in the kidneys after IRI. From these results, it was concluded that NQO1 has a protective role against renal injury induced by I/R and that this effect appears to be mediated by decreased NOX activity via cellular NADPH/NADP+ modulation. These results provide convincing evidence that NQO1 activation might be beneficial for ameliorating renal injury induced by I/R.  相似文献   

20.
Characterization was performed of a UV-resistant variant strain, UVr-10, derived from a human clonal cell line, RSb, with high sensitivity not only to the lethal effect of 254-nm far-ultraviolet (UV) irradiation but also to the effects of 4-nitroquinoline 1-oxide (4NQO) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and to the cell proliferation inhibition (CPI) effect of human leukocyte interferon (HuIFN-α) preparations.Colony-formation assays confirmed the increased resistance of UVr-10 cells to both UV and 4NQO, but no increased resistance to MNNG. The marked recovery from the inhibition of the total cellular DNA synthesis of UVr-10 cells, estimated by [methyl-3H]thymidine ([3H]dThd) uptake into the cellular DNA materials, was seen during 6 h after irradiation or 4NQO treatment even under the conditions without the recovery uptake into those of the parent RSb cells, but not during 6 h after MNNG treatment. Comparative studies on the activity of DNA repair synthesis between UVr-10 and RSb cells, by measuring the extent of UV-, 4NQO- or MNNG-induced unscheduled DNA synthesis (UDS) and DNA repair replication, revealed an increased activity of UVr-10 cells to UV and 4NQO but no significant increase of the activity to MNNG. These results suggest that increased DNA repair activities of a UVr-10 cell line may account for its becoming resistant to the lethal effect of UV and 4NQO.Concerning the CPI effect of HuIFN-α, UVr-10 cells showed increased resistance. Further, the DNA synthesis activity of UVr-10 cells was not so inhibited by HuIFN-α exposure as that of RSb cells. However, HuIFN-α-exposed UVr-10 cells showed more enhanced levels of activity of pppA(2′p5′A)n synthetase (2–5A synthetase) than the exposed RSb, thus suggesting that HuIFN-α could exert enough intracellular effect even in UVr-10 cells.The implication of the increased resistance of UVr-10 cells to the effects of UV, 4NQO and HuIFN-α, but not to those of MNNG, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号