首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of free radical processes on the oxidation-phosphorylation activity in the liver of CBA-mice has been studied, using a model of toxic form viral infection. The EPR-spectroscopic and electrochemical methods applied in the study of animals infected with pathogenic form of the influenza virus made it possible to reveal a decrease in the activity of the respiratory chain in mitochondria. This seems likely to be due to accumulation of endogenic nitric oxide in the liver tissue.  相似文献   

2.
The erythrocyte is a good model for investigation of the mechanisms of cell damage induced by oxidizing agents. Oxidative damage to cell components and cellular metabolism results in impaired rheological properties of circulating red blood cells and is involved in the development of some pathologies. The aim of the present study was to elucidate further the oxidative processes induced by tert-butyl hydroperoxide (tBOOH) in erythrocytes, identify cellular targets damaged by the oxidant, as well as estimate the energy and stoichiometry of the reactions that occur. The generation of free radicals in the cell was registered using the chemiluminescence technique. The products of oxyhemoglobin (oxyHb) oxidation, changes in intracellular glutathione (GSH) pool, and accumulation of the stable products of membrane lipid peroxidation were concurrently measured. The oxidative processes induced by tBOOH in red blood cells can be described as follows: 1) rapid GSH oxidation (30-60 sec) by glutathione peroxidase; 2) formation of radicals in the reaction between tBOOH and cellular Hb, which are then immediately consumed in lipid peroxidation reactions; 3) generation of chemiluminescence by the radicals formed. Several stages of the oxidative processes can be revealed. The order of the chemiluminescence reaction (n) with respect to oxidant was estimated to be equal to 2.5 at oxidant concentrations less than 0.5 mM and equal to 1.0 at higher oxidant concentrations. The order of the reaction of membrane lipid peroxidation was found to be n = 2.2 at 0.25-0.6 mM tBOOH and n = 0.5 at higher oxidant concentrations. The apparent activation energy of membrane lipid peroxidation was 55.8 +/- 6.4 kJ/mol, and that of oxyHb oxidation was 108 +/- 16 kJ/mol. It is shown that the interaction of tBOOH and HOCl in erythrocytes is accompanied by changes in both the total number of radicals generated in the cell and the time corresponding to the maximal rate of radical generation.  相似文献   

3.
Toxic oil syndrome (TOS) is caused by ingestion of denatured edible oils. Even though the etiology and pathogenesis of this disease are not fully known, it is quite clear that generation of free radicals caused by ingestion of fatty acid anilides is responsible for the pathogenetic mechanism in many TOS patients. Fatty acid anilides may also alter the free radical status of lungs and erythrocytes; this possibility may shed some light on understanding toxic oil syndrome. The present study describes the effects of oral administration of fatty acid anilides on the activities of major enzymes involved in the oxygen defense systems of lungs and erythrocytes. Feeding fatty acid anilides caused an increase in the superoxide dismutase (SOD) activity in erythrocytes, whereas it caused a decrease in the SOD activity in lungs. GSH-Px activity was not significantly changed in erythrocytes but was decreased in lungs. Although the activity of catalase was increased only by a higher dose in the erythrocytes, it was not affected in the lung at any dosage. Even though the ingestion of fatty acid anilides caused an increase in the SOD activity in the erythrocytes and a decrease in the SOD activity in the lungs, there was an increase in the lipid peroxidation in both cases. The increase in lipid peroxidation in erythrocytes is probably caused by the accumulation of H2O2, and that in the lungs is due to the accumulation of superoxide anion.  相似文献   

4.
Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by cognitive decline. Prodromal stage of AD, also called mild cognitive impairment (MCI), especially its amnestic type (aMCI), precedes dementia stage of AD. There are currently no reliable diagnostic biomarkers of AD in the blood. Alzheimer's disease is accompanied by increased oxidative stress in brain, which leads to oxidative damage and accumulation of free radical reaction end‐products. In our study, specific products of lipid peroxidation in the blood of AD patients were studied. Lipophilic extracts of erythrocytes (AD dementia = 19, aMCI = 27, controls = 16) and plasma (AD dementia = 11, aMCI = 17, controls = 16) were analysed by fluorescence spectroscopy. The level of these products is significantly increased in erythrocytes and plasma of AD dementia and aMCI patients versus controls. We concluded that oxidative stress end‐products are promising new biomarkers of AD, but further detailed characterisation of these products is needed.  相似文献   

5.
The metabolism of nitroprusside by hepatocytes or subcellular fractions involves a one-electron reduction of nitroprusside to the corresponding metal-nitroxyl radical. Thiol compounds also reduced nitroprusside to the metal-nitroxyl radical apparently via a thiol adduct. The nitroprusside reduction by microsomes was shown to be due to cytochrome P450 reductase as an antibody to cytochrome P450 reductase inhibits the microsomal reduction of nitroprusside, and the inhibitors of cytochrome P450 such as carbon monoxide or metyrapone had no effect. The reduction of nitroprusside by mitochondria in the presence of NADH or NADPH also produced the metal-nitroxyl radical. In hepatocytes, both mitochondria and the cytochrome P450 reductase are involved in the reduction of nitroprusside. The reductive metabolism of nitroprusside was found to produce toxic by-products, namely, free cyanide anion and hydrogen peroxide. We have also detected thiyl radicals formed in the thiol compound reduction of NP. We propose that cyanide and hydrogen peroxide are important toxic species formed in the metabolism of nitroprusside. The rate of reductive metabolism of nitroprusside by rat hepatocytes was much higher than with human erythrocytes. Therefore the major site of nitroprusside metabolism in vivo may be liver and not blood as originally proposed.  相似文献   

6.
Oxidative DNA damage and its repair in primary rat hepatocyte cultures was investigated following 4 h of incubation with the toxic iron chelate, ferric nitrilotriacetate (Fe-NTA), in the presence or absence of the potent protective flavonoid myricetin (25-50-100 microM). Seven DNA base oxidation products were quantified in DNA extracts by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode. Concomitantly, DNA repair capacity of hepatocytes was estimated by the release of oxidized-base products into culture media, using the same GC-MS method. A genotoxic effect of Fe-NTA (100 microM) in hepatocytes was evidenced by a severe increase in DNA oxidation over basal levels, with accumulation in cellular DNA of five oxidation products derived from both purines and pyrimidines. This prooxidant effect of iron was also noted by an induction of lipid peroxidation, estimated by free malondialdehyde production. Addition of increasing concentrations of myricetin (25-50-100 microM) simultaneously with iron prevented both lipid peroxidation and accumulation of oxidation products in DNA. Moreover, as an activation of DNA repair pathways, myricetin stimulated the release of DNA oxidation bases into culture media, especially of purine-derived oxidation products. This removal of highly mutagenic oxidation products from DNA of hepatocytes might correspond to an activation of DNA excision-repair enzymes by myricetin. This was verified by RNA blot analysis of DNA polymerase beta gene expression which was induced by myricetin in a dose-dependent manner. This represented a novel and original mechanism of cytoprotection by myricetin against iron-induced genotoxicity via stimulation of DNA repair processes. Since iron-induced DNA damage and inefficient repair in hepatocytes could be related to genotoxicity and most probably to hepatocarcinogenesis, modulation of these processes in vitro by myricetin might be relevant in further prevention of liver cancer derived from iron overload pathologies.  相似文献   

7.
An intraperitoneal injection of an exogenous delta-sleep inducing peptide (DSIP) at a dose of 12 g/100 g body weight shifted the prooxidant–antioxidant balance of free radical process (FRP) in tissues and erythrocytes of rats: the activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and the concentrations of antioxidants (reduced glutathione in particular) increased. The DSIP stimulated the myeloperoxidase activity in blood neutrophils and had no effect on the activity of xanthine oxidase, a prooxidant enzyme, in the brain and liver. Cold stress displaced the prooxidant–antioxidant balance by increasing the xanthine oxidase activity in tissues and decreasing the myeloperoxidase activity in blood neutrophils; it also inhibited the enzyme antioxidant activities in tissues and erythrocytes that was neutralized by an increased ceruloplasmin activity in blood plasma and by an elevated level of antioxidants in rat blood and tissues. Preliminary administration of DSIP to animals exposed to cold stress restored the prooxidant–antioxidant balance: it normalized the myeloperoxidase activity in blood neutrophils, decreased the xanthine oxidase activity, and increased the activity of antioxidant enzymes in tissues and erythrocytes restoring the antioxidant level. The molecular regulation mechanism of free radical processes by DSIP in tissues under stressful conditions is discussed.  相似文献   

8.
Influenza virus infection is associated with development of oxidative stress in lung and blood plasma, viz. increase of primary and secondary lipid peroxidation products. It was established that rimantadine treatment led to a decrease of the products of lipid peroxidation in tissues of mice experimentally infected with influenza virus A/Aichi/2/68 (H3N2). The effect is strongest in blood plasma (a decrease of about 50%) and weaker in the lung (about 20%). To elucidate the mechanism of this action of rimantadine, experiments were carried out with some model systems. The capability of rimantadine to scavenge superoxide radicals (scavenging properties) was studied in a system of xanthine-xanthine oxidase to generate superoxide. The amount of superoxide was measured spectrophotometrically by the NBT-test and chemiluminesce. Rimantadine does not show scavenging properties and its antioxidant effect observed in vivo, is not a result of its direct action on the processes of lipid peroxidation and/or interaction with antioxidant enzymes. The antioxidant properties of rimantadine were investigated by measurement of induced lipid peroxidation in a Fe2+ and (Fe2+ - EDTA) system with an egg liposomal suspension. Our findings with model systems do not prove an antioxidant or prooxidant effect of the drug on the processes of lipid peroxidation. Apparently, the observed antioxidant effect of rimantadine in vivo is not connected directly with free radical processes in the organism.  相似文献   

9.
It has been studied the effect of tetrachlormethane on the activity of the processes of microsomal mitochondrial and free radical oxidation in 3.8-10 and 20-24 month rats. The age peculiarities of the investigated processes have been ascertained. The introduction of CCl4 caused: the most increase of the level of free radical oxidation products in young animals. The activity of oxidative processes in microsomes were minimum in this group of animals. In old rats the contents of intermediate products of FRO increased in the least degree and end products--the same as young animals. The oxidative processes in mitochondria were decreased in the most degree in old rats. It has been concluded that the activation of free radical reactions by active metabolites of CCl4 plays the main role in progress of pathological processes in young animals and the covalent connection of low active radicals with proteins of membranes and enzymes in old rats.  相似文献   

10.
It is known that the rate of thrombus formation depends on interaction between platelets and erythrocytes, but the mechanism of this process has remained obscure. We here show that nanomolar levels of hemoglobin released from damaged red blood cells can induce platelet aggregation. The molecular mechanism is not receptor-based, but involves oxidation of oxyhemoglobin by platelet-derived hydrogen peroxide, with subsequent generation of a small unknown free radical species, detected by ESR spectroscopy. Methemoglobin and carbon monoxide-treated hemoglobin are unable to cause platelet activation or radical formation. The aggregation of platelets induced by hemoglobin is completely blocked by catalase or radical scavengers. These findings indicate a role for a novel extracellular free radical second messenger in the activation of platelets.  相似文献   

11.
In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6′-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria.  相似文献   

12.
Properties of the receptor for influenza C virus were studied. Although the receptor for influenza C virus on chicken erythrocytes was destroyed by the homologous virion, neuraminidase activity could not be detected in any of the influenza C virus strains tested. The receptor activity of chicken erythrocytes for influenza C virus was diminished by formaldehyde treatment but not by periodate oxidation. There was a considerable variation in the pattern and the titer of hemagglutination of influenza C virus when human erythrocytes of different blood types were used; the virus agglutinated most type B erythrocytes but not type A erythrocytes. By using human type B erythrocytes, differences among strains of influenza C virus in the hemagglutinating activity were also demonstrated. These results showed that both the receptor for and the receptor-destroying activity of influenza C virus were completely different from those of influenza A or B virus and also that carbohydrates were not involved in the receptor for influenza C virus.  相似文献   

13.
The action of several 1,2-benzoquinone derivatives on free radical processes initiated by carbon tetrachloride was studied. Among them a substance that effectively inhibited lipid peroxidation without substantial influence on covalent binding of radical products of metabolic cleavage of carbon tetrachloride as well a substance that equally inhibited both processes were found. It was shown that 1,2-benzoquinones can be useful tool for investigation of free radical mechanisms of carbon tetrachloride-initiated liver cell damage in vivo.  相似文献   

14.
The effect of Legalon was investigated parallel with that of Adriblastina (doxorubicin) and paracetamol on some parameters characterizing the free radical scavenger mechanisms of human erythrocytes in vitro and on the time of acid hemolysis performed in aggregometer. Observations suggest that Adriblastina enhances the lipid peroxidation of the membrane of red blood cells, while paracetamol causes significant depletion of intracellular glutathione level, thus decreasing the free radical eliminating capacity of the glutathione peroxidase system. Legalon on the other hand, is able to increase the activity of both superoxide dismutase and glutathione peroxidase, which may explain the protective effect of the drug against free radicals and also the stabilizing effect on the red blood cell membrane, shown by the increase of the time of full haemolysis.  相似文献   

15.
It has been shown that treatment of the rat brain cortex synaptosomes with glutamate produced both a significant reduction in Na+,K+-ATPase activity and accumulation of products of lipid peroxidation (LPO) like malone dialdehyde, dienoic conjugates, and Schiff bases. A suppression of different routes of free radical production in cytosol by quinacrine, indomethacin, and allopurinol (blockers of phospholipase A2, cyclooxygenases, and xanthine oxidases, respectively) as well as by MK-801 (a antagonist of MDA-receptors) prevented or lowered significantly the effect of glutamate on Na+,K+-ATPase activity. No significant effect of glutamate on the Na+,K+-ATPase activity was also observed in the presence of L-NAME (inhibitor of NO-synthase). Inhibitors of the arachidonate and NO-synthase pathway of free radical production also prevented accumulation of LPO end products in the rat brain cortex under the effect of glutamate. In the presence of rotenone and olygomycin (blockers of mitochondrial electron transport and ATP synthase, respectively), glutamate led to even a greater inactivation of Na+,K+-ATPase and accumulation of malone dialdehyde. The data obtained suggest that at early stages of ischemia the neurotoxic effect of glutamate is due to an inflow of calcium ions through NMDA receptors and activation of different pathways of free radical production in cytosol of nerve cells. At these stages, protective functions of mitochondria appear to predominate due to their ability to accumulate calcium ions and to prevent an excessive increase of the cytosol calcium concentration under the effect of excitatory amino acids.  相似文献   

16.
Under D-hypovitaminosis (control) conditions the statistically reliable increase of blood serum lipids free radical oxidation was revealed in comparison with the intact animals. Administration of vitamin D3 to the animals suffering from D-hypovitaminosis leads for statistically reliable decrease of blood serum lipids free radical oxidation, while 20-hydroxyecdysone in quantity of 0.02 mg per 1 kg of the animal body weight displays the antioxidative properties. Its antioxidative effect is characterized by a statistically reliable increase of Tind chemiluminescence kinetical parameter as compared with the control. Under D-hypovitaminosis conditions in the mitochondrial membranes the products of lipids free radical oxidation--dien conjugates are accumulated. In the case of administrating to the animals suffering from D-hypovitaminosis D3 or 20-hydroxyecdysone these oxidation products are absent. 20-Hydroxyecdysone under these conditions have been revealed as inducing accumulation in the mitochondrial and microsomal membranes of the substances with lambda 225 nm.  相似文献   

17.
The relationship between the cholesterol (Ch) content and the concentration of lipid peroxidation (LPO) products in activated platelets and the effect of these parameters on the structure-function characteristics of platelet membranes were studied. It was found that esterified Ch activates free radical processes occurring in platelets. Nonesterified Ch does not induce the production of primary products of LPO (dienoic conjugates) but promotes the accumulation of a secondary LPO metabolite, malonic dialdehyde, this reaction being mediated via indirect mechanisms. The higher (in comparison with normal) orderliness and orientation of membranes in platelets reflect the increase in the concentration of dienoic conjugates and nonesterified Ch. The observed differences in the aggregability of platelets are due to the changes in the Ch content as well as to the "rigidity" of blood platelets.  相似文献   

18.
We have extended our previous findings and shown that human immunodeficiency virus Tat protein, in addition to nitric oxide (NO), stimulated rat microglial cultures to release pro-inflammatory cytokine interleukin-1beta and tumour necrosis factor-alpha in a nuclear factor (NF)-kappaB-dependent manner. At the same time, Tat stimulated the accumulation of free radicals, as indicated by the increased levels of isoprostane 8-epi-prostaglandin F(2alpha) (8-epi-PGF(2alpha)), a reliable marker of lipid peroxidation and oxidative stress, by a mechanism unrelated to NF-kappaB activation. The presence of free radical scavengers abrogated Tat-induced 8-epi-PGF(2alpha) accumulation without affecting NO and cytokine production. Consistently, Tat-induced IkappaBalpha degradation - an index of NF-kappaB activation - was not affected by free radical scavengers, but was prevented by an NF-kappaB-specific inhibitor. Our observations indicate that NF-kappaB plays a key role in Tat-dependent microglial activation, and that oxidative stress and NF-kappaB activation induced by Tat occur by independent mechanisms.  相似文献   

19.
The system Fe(2+)-ascorbate was used for lipid peroxidation (LPO) activation in isolated heart tissue. The stimulation of free radical processes in the myocardium caused a rise in the level of LPO products and a significant lowering of that of prostacyclin. Intravenous injection of synthetic analogues of enkephalins before LPO activation inhibited LPO and resulted in prostacyclin synthesis normalization. The addition of peptides under study into perfusion solution led to a decrease in LPO primary products level and in thromboxane synthesis.  相似文献   

20.
The effects of the hydroxylation product 3,4-benzo(a)pyrene and the free radical scavenger 1,2,3-trioxybenzene on cytochrome P-450 degradation in isolated rat hepatocytes induced by the Fe2+-ADP + NADPH system activating lipid peroxidation (LPO) were investigated. During incubation of hepatocytes, cytochrome P-450 is destroyed due to accumulation of LPO products. Addition of the free radical scavenger 1,2,3-trioxybenzene and the monoxygenase substrate 3,4-benzo(a)pyrene to the incubation medium induces inhibition of LPO and simultaneous stabilization of cytochrome P-450. Deceleration of malonic dialdehyde production by the free radical scavenger of the monoxygenase substrate suggests that both the compounds stabilize cytochrome P-450. It is assumed that in liver hepatocytes, exogenous free radical scavengers of the phenolic type and the products of their decarboxylation protect cytochrome P-450 against the LPO-induced destruction via oxidative metabolism of hydrophobic substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号