首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.  相似文献   

2.
The effect of biomass concentration and mycelial morphology on fungal fermentation broth rheological properties has been investigated. In previous work it had been shown that commonly used rheological parameters, such as the power law consistency and flow behavior indices, could be correlated successfully with the broth biomass concentration and clump morphological parameters of roughness and compactness. More recent work on a broader range of data showed a correlation between roughness and compactness; consequently, it was not correct to use both of these morphological variables simultaneously in rheological parameter correlations. Furthermore, earlier correlations were only made using clump morphological parameters, as clumps were found to be around 90% of the biomass in batch fermentations. In the present work it was found that the percentage of clumps fell to around 30% to 40% of a sample during the later stages of fed-batch fermentations. No clear relationship between the flow behavior index and biomass concentration was found, at least for those phases of the fermentation in which the viscosities were high enough for the rheology to be characterized by a disk turbine rheometer. The mean value of the flow behavior index was found to be 0.35 +/- 0.1 (standard deviation) throughout both batch and fed-batch fermentations, although some significant deviations from this value were observed early and very late in the fermentations. Correlations for the consistency index, measured using a disk turbine rheometer, were based on the biomass concentration and the mycelial size (represented by the mean projected area or the mean maximum dimension of all the mycelia). These correlations were reasonably successful for both fed-batch and batch fermentations. The correlation using the mean maximum dimension was preferred to that using the mean projected area, as the former is independent of magnification. The proposed correlation is: where K is the consistency index (Pa. s(n>)), C(m) is the biomass concentration as dry cell weight (g L(-1)), and D is the mean maximum dimension (microm). It should be noted that small changes in the exponent on the biomass concentration (alpha) may dramatically affect any predictions. Consequently, caution in the use of this correlation (and that based on mean projected area) is advocated, although its accuracy may be suitable for operational or design purposes.  相似文献   

3.
The objective of this study was to quantify the effect of disrupting two chitin synthases, chsB and csmA, on the morphology and rheology during batch cultivation of Aspergillus oryzae. The rheological properties were characterized in batch cultivations at different biomass concentrations (from 3.4-22.5 g kg(-1) biomass) and the power-law model adequately described the rheological properties. In the cultivations there were pellets, clumps, and freely dispersed hyphal elements. The different morphological fractions were quantified using image analysis. The apparent viscosity of the fermentation broth was significantly affected by the biomass concentration, the morphology, and also by pH. The chsB disruption strain had lower consistency index K values for all biomass concentrations investigated, which is a desirable trait for industrial Aspergillus fermentations.  相似文献   

4.
The morphology of filamentous microorganisms in submerged culture is of great interest. On the one hand, morphology influences rheology and mass transfer in the fermentation broth. On the other hand, morphology could be a visible expression of physiology and metabolism of the microorganisms. An algorithm for the morphological characterization and the estimation of biomass of filamentous microorganisms by means of digital image analysis has been developed. After measurement of eight features the objects in the broth are classified into different morphological classes, i.e., pellet aggregates, rough pellets, smooth pellets, mycelial flocks, and medium components. The classification is based on the measured object parameters and a knowledge base, which was generated in a preceding training phase. The method was tested on Streptomyces tendae Tü 901/8c. A typical batch fermentation in a defined medium is presented. It could be shown that both morphology and physiology have been changed in the course of the fermentation, especially during the transition from trophophase to idiophase. In order to supervise the fermentation processes continuously, an on-line image analysis system has been developed. Sampling, dilution, and image acquisition of the culture were performed under the control of a personal computer. (c) 1997 John Wiley & Sons, Inc.  相似文献   

5.
On-line rheological measurements and control in fungal fermentations   总被引:1,自引:0,他引:1  
A system for on-line rheological measurements and control in filamentous fermentations is presented. The output signals from the control unit can be used in terms of process control. Diluting the broth in a growth controlled feed pattern was found to influence the viscosity of the broth and lead to process improvements. Just diluting the fermentation broth to keep the viscosity below a preset value was seen to give only temporary process improvements. The higher the viscosity, the less effective the viscosity controlled dilutions. The failure to get full control over the viscosity by the dilution techniques used is caused by the large number of factors influencing the rheological properties of an Aspergillus niger culture. The factors shown in this work to influence the rheological properties of the fermentation broth were the biomass concentration, the specific growth rate, mixing qualities (impeller speed and working volume), and the dissolved oxygen concentration. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
The main purpose of this article is to demonstrate that principal component analysis (PCA) and partial least squares regression (PLSR) can be used to extract information from particle size distribution data and predict rheological properties. Samples from commercially relevant Aspergillus oryzae fermentations conducted in 550 L pilot scale tanks were characterized with respect to particle size distribution, biomass concentration, and rheological properties. The rheological properties were described using the Herschel-Bulkley model. Estimation of all three parameters in the Herschel-Bulkley model (yield stress (tau(y)), consistency index (K), and flow behavior index (n)) resulted in a large standard deviation of the parameter estimates. The flow behavior index was not found to be correlated with any of the other measured variables and previous studies have suggested a constant value of the flow behavior index in filamentous fermentations. It was therefore chosen to fix this parameter to the average value thereby decreasing the standard deviation of the estimates of the remaining rheological parameters significantly. Using a PLSR model, a reasonable prediction of apparent viscosity (micro(app)), yield stress (tau(y)), and consistency index (K), could be made from the size distributions, biomass concentration, and process information. This provides a predictive method with a high predictive power for the rheology of fermentation broth, and with the advantages over previous models that tau(y) and K can be predicted as well as micro(app). Validation on an independent test set yielded a root mean square error of 1.21 Pa for tau(y), 0.209 Pa s(n) for K, and 0.0288 Pa s for micro(app), corresponding to R(2) = 0.95, R(2) = 0.94, and R(2) = 0.95 respectively.  相似文献   

7.
Aspergillus niger was grown in a 7-L chemostat at biomass levels of 7 to 9 gL(-1); dilution rates of 0.03, 0.05, 0.075, and 0.009 h(-1); and dissolved oxygen tensions of 7%, 12%, and 40% of air saturation. Broth rheological measurements were made on-line, while off-line image analysis was used to measure mycelial morphology, including characterization of mycelial aggregates (clumps). Under all conditions, more than 87% of the hyphase were in clumps, the shape of which determined the rheological characteristics of the broth. In particular, the power law consistency index could be correlated with the biomass concentration and the roughness factor of the clumps, which describes their hairiness. A decrease in specific growth rate decreased roughness, possibly due to changes in the amount of clump breakup. However, decreases of roughness with increasing dissolved oxygen tension might rather imply some effect on hyphal-hyphal interactions within the clumps. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
The influence of Paecilomyces japonica pellet morphology on fermentation broth rheology and exobiopolymer production was investigated in a 5-1 jar fermenter. Rapid formation of pellets was observed after the first day of fermentation; and these slowly increased in size and roughness. This, together with the increase in biomass concentration, altered the transport characteristics and broth rheology towards a pseudoplastic nature which, in turn, influenced cell growth and exo-biopolymer production. At mild agitation, high aeration and optimum substrate concentration, pellets were the most predominant morphological form, compared with free mycelia. The broth rheology showed pseudoplastic behavior; and the fungal morphology was closely related to the rheological properties.  相似文献   

9.
The morphology parameters of mycelial culture (Penicillium chrysogenum) were measured and quantified by rheology and filtration methods. Two of the morphology parameters obtained from rheology measurements, delta defined by the Casson equation and delta* defined by intrinsic viscosity, were found to vary systematically with broth age and with the observed morphology by microscopy. Three of the filtration parameters, hyphal density, Kozeny constant, and index of compressibility, are demonstrated as sensitive indicators of the broth age and mycelial morphology. Two of the morphology parameters, delta and delta*, were used to cross-correlate with hyphal density. Because various mycelial fermentations require different growth morphologies (pellet and filament) for optimum product yield and the morphology of mycelial broths varies with broth age, it is suggested that these morphology parameters could be used to represent the morphology of mycelial broths quantitatively. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors.  相似文献   

11.
Summary A large number of submerged citric acid fermentations in a beet molasses substrate was studied. The development of Aspergillus niger from conidia to pellets was followed. Rheological characteristics of the fermentation broth including the pellets were determined. The results obtained confirm the fact that the non-Newtonian pseudoplastic behaviour of the fermentation broth was due to the presence of mycelial pellets. The most significant changes in rheological properties occurred during the period of maximal citric acid production and increase in biomass. Offprint requests to: M. Berovi  相似文献   

12.
13.
目的:促溶剂通常用于甾体生物催化过程以提高底物溶解度,但在发酵液中添加促溶剂对菌体形态及发酵液特性的影响还少有报道。方法:利用旋转流变仪和顺磁分析仪分别对发酵液的流变特性及体积氧传递系数KLa进行监测。结果:无论是否添加促溶剂,发酵液都表现出非牛顿流体力学特性,但添加3%1,2丙二醇后同一时期发酵液稠度系数减小大约17%,而流动指数平均增加8%。结论:添加促溶剂使得发酵液表观黏度减小,体积氧传递系数增大,从而有利于甾体化合物的生物转化。  相似文献   

14.
The filamentous fungus Glarea lozoyensis produces a novel, pharmaceutically important pneumocandin (B0) that is used to synthesize a polypeptide, which demonstrates fungicidal activity against clinically relevant pathogens. The scale-up of the pneumocandin fermentation requires an understanding of the rheological properties of the broth and the factors that influence flow behavior. A systematic approach for characterizing the rheological properties using a standard methodology is presented here. An appropriate rheometer was chosen and the effects of shear rate ramping, broth handling, creep and yield testing were examined. The fed-batch fermentation used a soluble production medium that allowed the relationship between biomass and rheological properties to be studied up to the 19-m3 scale. The morphologically heterogeneous broth demonstrated time-dependent shear thinning behavior with thixotropy and a yield stress. The flow curves were described by the power law model, with flow behavior of 0.35-0.4 and consistency index up to 10 Pa.sn. The use of a cup and bob rheometer was preferable to alternative techniques, including turbine and spindle systems defined by Mitschka's technique. The consistency index and flow behavior were shown to have a non-linear relationship with biomass concentrations up to 140 g/L. The consistency index continually increased with biomass during the fermentation, while the flow behavior initially decreased rapidly and then remained at low values for the remainder of the batch cultivation. The consistency index and yield stress were influenced by temperature, osmotic pressure, and pH, while the flow behavior remained independent of these factors.  相似文献   

15.
The growth and production pattern of phytase by a filamentous fungus, Aspergillus niger van Teighem, were studied in submerged culture at varying agitation rates and controlled and uncontrolled pH conditions. Allowing the initial culture to grow under neutral condition with subsequent decline in pH resulted in increased phytase productivity. A maximum of 141 nkat/mL phytase was obtained when the broth pH was maintained at pH 2.5 as compared to 17 nkat/mL units at controlled pH 5.5. The culture morphology and rheological properties of the fermentation broth significantly varied with the agitation rate. The volumetric oxygen transfer coefficient was determined at different phases of fungal growth during batch fermentation using static gassing out and dynamic gassing out methods. The oxygen transfer coefficient (k(L)a) of the fermenter was found to be 125 h(-)(1) at 500 rpm as compared to 38 h(-)(1) at 200 rpm. The oxygen transfer rates at different phases of growth were significantly affected by cell mass concentration and fungal morphology. During the course of fermentation there was a gradual decline of k(L)a from 97 h(-)(1) on day 2 to 63 h(-)(1) on day 6 of fermentation, after which no significant change was observed. The degree of agitation considerably influenced the culture morphology where shear thinning of filamentous fungus was observed with the increase in agitation.  相似文献   

16.
The objective of this study was to quantify the effect of fungal biomass concentration on the rheology of non-Newtonian fermentation systems. Batch fermentations of Penicillium chrysogenum were carried out with glucose as the sole carbon source. The flow behavior of the system was characterized at various fermentation times and was adequately described by the power-law model. The apparent viscosity of the fermentation broth was significantly affected by biomass concentrations in the fermenter. Fermentation broths containing 17.71 g/l biomass as dry weight were characterized by an apparent viscosity of 0.25 Pa s at a shear rate of 50 s−1. Microbial concentration also affected the power-law flow-behavior index and the consistency index. The value of the consistency index ranged from 0.002 Pa s n at a biomass concentration of 0.1 g/l to 6.14 Pa s n at a biomass concentration of 17.71 g/l. The flow-behavior index decreased from an initial value of 1 to a final value of 0.17. Simple empirical correlations have been proposed to quantify the dependence of the power-law parameters on fungal biomass concentration. Experimental data obtained in this study were accurately described by these correlations. The general applicability of these relationships was tested, using previously published rheological data on Aspergillus awamori and Aspergillus niger fermentation broths, and good agreement was seen between experimental data and the predictions from the empirical correlations. Received: 24 March 1998 / Received revision: 10 September 1998 / Accepted: 16 October 1998  相似文献   

17.
The cholesterol lowering drug, Lovastatin (Mevacor), acts as an inhibitor of HMGCoA reductase, and is produced from an Aspergillus terreus fermentation.Pilot scale studies were carried out in 800 liter fermenters to determine the effects of cell morphology on the oxygen transport properties of this fermentation. Specifically, parallel fermentations giving (i) filamentous mycelial cells, and (ii) discrete mycelial pellets, were quantitatively characterized in terms of broth viscosity, availability of dissolved oxygen, oxygen uptake rates and the oxygen transfer coefficient under identical operating conditions.The growth phase of the fermentation, was operated using a cascade control strategy which automatically changed the agitation speed with the goal of maintaining dissolved oxygen at 50% saturation. Subsequently stepwise changes were made in agitation speed and aeration rate to evaluate the response of the mass transfer parameters (DO, OUR, and k L a). The results of these experiments indicate considerable potential advantages to the pellet morphology from the standpoint of oxygen transport processes.List of Symbols DO % sat. Dissolved oxygen concentration - k L a h–1 Gas-liquid mass transfer coefficient - OUR mmol/dm3h Oxygen uptake rate - P/V KW/m3 Agitator power per unit volume - V s m/s Superficial air velocity - app cP Apparent viscosity  相似文献   

18.
Characterization of mycelial morphology is important for physiological and engineering studies of filamentous fermentations, and in the design and operation of such fermentations. Image analysis has been developed as a method for this characterization, and has been shown to be faster and generally more accurate than previous methods. A fully automatic system has been developed, in which speed is gained, but with loss of accuracy in some cases. The method has been tested on Streptomyces clavuligerus and Penicillium chrysogenum P1 batch fermentations. It has also been tested on a fed-batch Penicillium chrysogenum P2 fermentation, in which the medium contained solid ingredients. Fully automatic image analysis for morphological characterization of filamentous microorganisms is an important development which will make practical many engineering and physiological studies of such fermentations that have so far not been completely satisfactory.  相似文献   

19.
The goal in this study was to determine if pulsed addition of substrate could be used to alter filamentous fungal morphology during fermentation, to result in reduced broth viscosity. In all experiments, an industrially relevant strain of Aspergillus oryzae was grown in 20-liter fermentors. As a control, cultures were fed limiting substrate (glucose) continuously. Tests were performed by altering the feeding strategy so that the same total amount of glucose was fed in repeated 300-s cycles, with the feed pump on for either 30 or 150 s during each cycle. Variables indicative of cellular metabolic activity (biomass concentration, oxygen uptake rate, base consumed for pH control) showed no significant difference between continuous and pulse-fed fermentations. In addition, there was no significant difference between total extracellular protein expression or the apparent distribution of these proteins. In contrast, fungal mycelia during the second half of pulse-fed fermentations were approximately half the size (average projected area) of fungi during fermentations with continuous addition of glucose. As a result, broth viscosity during the second half of pulse-fed fermentations was approximately half that during the second half of continuous fermentations. If these results prove to be applicable for other fungal strains and processes, then this method will represent a simple and inexpensive means to reduce viscosity during filamentous fungal fermentation.  相似文献   

20.
An automated image analysis method for classifying and measuring pellets of filamentous fungi growing in submerged fermentations has been developed. The method discriminates between pelleted mycelial growth and loose aggregates of dispersed hyphae. Pellets are classified into smooth and hairy types. In both cases, the core of the pellet is identified and its shape and size characterized. For hairy pellets the annular region is also characterized. The method was tested on pellets of Aspergillus niger ATCC 11414 grown in a defined medium in shake flasks. This rapid method makes practical extensive studies on the morphology of pellets in submerged fermentations and the influence of fermentation conditions on that morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号