首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extract from activated Xenopus eggs joins both matching and nonmatching ends of exogenous linear DNA substrates with high efficiency and fidelity (P. Pfeiffer and W. Vielmetter, Nucleic Acids Res. 16:907-924, 1988). In mammalian cells, such nonhomologous end joining (NHEJ) is known to require the Ku heterodimer, a component of DNA-dependent protein kinase. Here I investigated whether Ku is also required for the in vitro reaction in the egg extract. Immunological assays indicate that Ku is very abundant in the extract. I found that all NHEJ was inhibited by autoantibodies against Ku and that NHEJ between certain combinations of DNA ends was also decreased after immunodepletion of Ku from the extract. The formation of a joint between a DNA end with a 5'-protruding single strand (PSS) and an end with a 3'-PSS, between two ends with 3'-PSS, and between two blunt ends was most Ku dependent. On the other hand, NHEJ between two DNA ends bearing 5'-PSS was Ku independent. These results show that the Xenopus cell-free system will be useful to biochemically dissect the role of Ku in eukaryotic NHEJ.  相似文献   

2.
Fibroblasts from patients with Fanconi anemia (FA) display genomic instability, hypersensitivity to DNA cross-linking agents, and deficient DNA end joining. Fibroblasts from two FA patients of unidentified complementation group also had significantly increased cellular homologous recombination (HR) activity. Results described herein show that HR activity levels in patient-derived FA fibroblasts of groups A, C, and G were 10-fold greater than those seen in normal fibroblasts. In contrast, HR activity in group D2 fibroblasts was identical to that in normal cells. Western blot analysis revealed that the RAD51 protein was elevated 10-fold above normal levels in group A, C, and G fibroblasts, but was not altered in group D2 fibroblasts. HR activity levels in these former cells could be restored to near-normal levels by electroporation with anti-RAD51 antibody, whereas similar treatment of normal and complementation group D2 fibroblasts had no effect. These findings are consistent with a model in which FA proteins function to coordinate DNA double-strand break repair activity by regulating both recombinational and non-recombinational DNA repair. Interestingly, whereas positive regulation of DNA end joining requires the combined presence of all FA proteins thus far tested, suppression of HR, which is minimally dependent on the FANCA, FANCC, and FANCG proteins, does not require FANCD2.  相似文献   

3.
DNA double strand breaks (DSB) are the most serious form of DNA damage. Repair of DSBs is important to prevent chromosomal fragmentation, translocations and deletions. Non-homologous end joining (NHEJ) is one of three major pathways for the repair of DSBs in human cells. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes in V(D)J recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku proteins, XRCC4, DNA ligase IV, and Artemis. This review focuses on the mechanisms an dregulation of DSB repair by NHEJ in mammalian cells.  相似文献   

4.
Non-homologous DNA end joining   总被引:9,自引:0,他引:9  
DNA double-strand breaks (DSBs) are a serious threat for the cell and when not repaired or misrepaired can result in mutations or chromosome rearrangements and eventually in cell death. Therefore, cells have evolved a number of pathways to deal with DSB including homologous recombination (HR), single-strand annealing (SSA) and non-homologous end joining (NHEJ). In mammals DSBs are primarily repaired by NHEJ and HR, while HR repair dominates in yeast, but this depends also on the phase of the cell cycle. NHEJ functions in all kinds of cells, from bacteria to man, and depends on the structure of DSB termini. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. The usage of microhomology is common in DNA end-joining of physiological DSBs, such as at the coding ends in V(D)J (variable(diversity) joining) recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), which is recruited by DNA Ku protein, a heterodimer of Ku70 and Ku80, as well as XRCC4 protein and DNA ligase IV. A complex of Rad50/Mre11/Xrs2, a family of Sir proteins and probably other yet unidentified proteins can be also involved in this process. NHEJ and HR may play overlapping roles in the repair of DSBs produced in the S phase of the cell cycle or at replication forks. Aside from DNA repair, NHEJ may play a role in many different processes, including the maintenance of telomeres and integration of HIV-1 genome into a host genome, as well as the insertion of pseudogenes and repetitive sequences into the genome of mammalian cells. Inhibition of NHEJ can be exploited in cancer therapy in radio-sensitizing cancer cells. Identification of all key players and fundamental mechanisms underlying NHEJ still requires further research.  相似文献   

5.
Summary Uptake of 3H-thymidine and its incorporation into DNA was studied in fibroblastic cell lines derived from normal individuals, patients with Fanconi anemia, and those heterozygous for this genetic trait. Uptake and incorporation for the normal cells were about five and seven times higher, respectively, than for Fanconi anemia fibroblasts; mean values for heterozygotes were intermediate. This effect was dependent on the duration of cell exposure to 3H-thymidine and was not observed with other labeled compounds. Thus, a genetically-determined metabolic defect may exist in Fanconi anemia patients which can be readily studied at the cellular level. This finding may be relevant to the observed clinical, cytogenetic, biochemical, and biologic properties related to expression of the Fanconi anemia gene.  相似文献   

6.
Raghavan SC  Raman MJ 《DNA Repair》2004,3(10):1297-1310
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.  相似文献   

7.
Fanconi anemia (FA) fibroblasts are known to be exceptionally sensitive to the cytotoxic action of mitomycin C (MMC). The survival of FA cells was enhanced significantly when 0.5 mM caffeine or 0.5 mM adenine was added for 72 h after the cells were exposed to MMC. In other experiments in which MMC was not used, FA fibroblasts were shown to be significantly more sensitive than control cells to 6-mercaptopurine (6-MP), 6-thioguanine (6-TG), and 6-azauridine (6-AU). These observations offer a new approach to defining the basic biochemical defect in FA.  相似文献   

8.
In mammalian cells, DNA double-strand breaks are repaired mainly by non-homologous end joining, which modifies and ligates two DNA ends without requiring extensive base pairing interactions for alignment. We investigated the role of DNA polymerases in DNA-PK-dependent end joining of restriction-digested plasmids in vitro and in vivo. Rejoining of DNA blunt ends as well as those with partially complementary 5′ or 3′ overhangs was stimulated by 20–53% in HeLa cell-free extracts when dNTPs were included, indicating that part of the end joining is dependent on DNA synthesis. This DNA synthesis-dependent end joining was sensitive to aphidicolin, an inhibitor of α-like DNA polymerases. Furthermore, antibodies that neutralize the activity of DNA polymerase α were found to strongly inhibit end joining in vitro, whereas neutralizing antibodies directed against DNA polymerases β and did not. DNA sequence analysis of end joining products revealed two prominent modes of repair, one of which appeared to be dependent on DNA synthesis. Identical products of end joining were recovered from HeLa cells after transfection with one of the model substrates, suggesting that the same end joining mechanisms also operate in vivo. Fractionation of cell extracts to separate PCNA as well as depletion of cell extracts for PCNA resulted in a moderate but significant reduction in end joining activity, suggesting a potential role in a minor repair pathway.  相似文献   

9.
Processes of DNA end joining are assumed to play a major role in the elimination of DNA double-strand breaks (DSB) in higher eucaryotic cells. Linear plasmid molecules terminated by nonhomologous restriction ends are the typical substrates used in the analysis of joining mechanisms. However, due to their limited structural variability, DSB ends generated by restriction cleavage cover probably only part of the total spectrum of naturally occurring DSB termini. We therefore devised novel DNA substrates consisting of synthetic hairpin-shaped oligonucleotides which permit the construction of blunt ends and 5'- or 3'-protruding single-strands (PSS) of arbitrary sequence and length. These substrates were tested in extracts of Xenopus laevis eggs known to efficiently join linear plasmids bearing nonhomologous restriction termini (Pfeiffer and Vielmetter, 1988). Sequences of hairpin junctions indicate that the short hairpins are joined by the same mechanisms as the plasmid substrates. However, the bimolecular DNA end joining reaction was only detectable when both hairpin partners had a minimal duplex stem length of 27bp and their PSS-tails did not exceed 10nt.  相似文献   

10.
There are two types of chromosome instability, structural and numerical, and these are important in cancer. Many structural abnormalities are likely to involve double-strand DNA (dsDNA) breaks. Nonhomologous DNA end joining (NHEJ) and homologous recombination are the major pathways for repairing dsDNA breaks. NHEJ is the primary pathway for repairing dsDNA breaks throughout the G0, G1 and early S phases of the cell cycle [1]. Ku86 and DNA ligase IV are two major proteins in the NHEJ pathway. We examined primary dermal fibroblasts from mice (wild type, Ku86(+/-), Ku86(-/-), and DNA ligase IV(+/-)) for chromosome breaks. Fibroblasts from Ku86(+/-) or DNA ligase IV(+/-) mice have elevated frequencies of chromosome breaks compared with those from wild-type mice. Fibroblasts from Ku86(-/-) mice have even higher levels of chromosome breaks. Primary pre-B cells from the same animals did not show significant accumulation of chromosome breaks. Rather the pre-B cells showed increased cell death. These studies demonstrate that chromosome breaks arise frequently and that NHEJ is required to repair this constant spontaneous damage.  相似文献   

11.
Accurate repair of free radical-mediated DNA double-strand breaks by the nonhomologous end joining pathway requires replacement of fragmented nucleotides in the aligned ends by a gap-filling DNA polymerase. Nuclear extracts of human HeLa cells, supplemented with recombinant XRCC4-DNA ligase IV complex (XRCC4/ligase IV), were capable of accurately rejoining model double-strand break substrates with a 1- or 2-base gap, and the gap-filling step was dependent on XRCC4/ligase IV. To determine what polymerase was responsible for gap filling, end joining was examined in the presence of polyclonal antibodies against each of two prime candidate enzymes, DNA polymerases mu and lambda, both of which were present in the extracts. For a DNA substrate with partially complementary 3' overhangs and a 2-base gap, antibodies to polymerase lambda completely eliminated both gap filling and accurate end joining, whereas antibodies to polymerase mu had little effect. Immunodepletion of polymerase lambda, but not polymerase mu, likewise blocked both gap filling and end joining, and both functions could be restored by addition of recombinant polymerase lambda. Recombinant polymerase mu, and a truncated polymerase lambda lacking the Brca1 C-terminal domain, were at least 10-fold less active in restoring gap filling to the immunodepleted extracts, and polymerase beta was completely inactive. The results suggest that polymerase lambda is the primary gap-filling polymerase for accurate nonhomologous end joining, and that the Brca1 C-terminal domain is required for this activity.  相似文献   

12.
DNA ligase activity was determined in crude cell extracts using a new assay which measures the retention of double stranded circular phage λ DNA on nitrocellulose filters, and allows accurate determinations of the enzyme activity with cell concentration corresponding to 0.1 μg of proteins. Using this assay, we show that the DNA ligase activity varies greatly among mammalian cell lines. The higher activity is found in actively growing fibroblasts where it is stimulated by dimethyl sulfate pretreatment of the cells, whereas the low activity measured in resting lymphocytes is not modified by dimethyl sulfate. The DNA ligase activity correlates with the cells sensitivity towards ionizing radiations.  相似文献   

13.
In mammalian cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair. Rejoining of DSB produced by decay of (125)I positioned against a specific target site in plasmid DNA via a triplex-forming oligonucleotide (TFO) was investigated in cell-free extracts from Chinese hamster ovary cells. The efficiency and quality of NHEJ of the "complex" DSB induced by the (125)I-TFO was compared with that of "simple" DSB induced by restriction enzymes. We demonstrate that the extracts are indeed able to rejoin (125)I-TFO-induced DSB, although at approximately 10-fold decreased efficiency compared with restriction enzyme-induced DSB. The resulting spectrum of junctions is highly heterogeneous exhibiting deletions (1-30 bp), base pair substitutions, and insertions and reflects the heterogeneity of DSB induced by the (125)I-TFO within its target site. We show that NHEJ of (125)I-TFO-induced DSB is not a random process that solely depends on the position of the DSB but is driven by the availability of microhomology patches in the target sequence. The similarity of the junctions obtained with the ones found in vivo after (125)I-TFO-mediated radiodamage indicates that our in vitro system may be a useful tool to elucidate the mechanisms of ionizing radiation-induced mutagenesis and repair.  相似文献   

14.
Indirect evidence for the presence of a growth inhibitor in normal human fibroblasts has been obtained previously; the inhibitory activity has been found associated with crude cell extracts, but the molecule responsible for the growth inhibition has never been isolated. We have isolated a glycopeptide fraction from human fibroblast cultures, whose synthesis decreases when the cells are stimulated into the division cycle. It was separated by electric charge, lectin affinity, and molecular mass. When added to quiescent cells simultaneously with a growth stimulus, the glycopeptide reduces DNA synthesis activity. The relationship of the kinetics of the synthesis of the glycopeptide with the cell division cycle and its molecular weight are different from what has been described so far for other growth regulators. The decreased synthesis of this inhibitor, induced by growth factors, seems to be one of the requirements for the initiation of the division cycle by human fibroblasts. This response to growth factors was stable during the lifespan of the fibroblast population and became less pronounced only in cells at the end of their replicative potential. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Double strand DNA breaks are usually caused by ionizing radiation and radiomimetic drugs, but can also occur under normal physiological conditions during double strand break-induced recombination, such as the rearrangement of T-cell receptor and immunoglobulin genes during lymphoid development or the mating type switching in yeast. The main repair mechanism for double strand breaks in higher eukaryotes is nonhomologous DNA end joining (NHEJ), which modifies and ligates the two DNA ends without the help of extensive base-pairing interactions for alignment. Defects in double strand break repair are associated with radiosensitivity, predisposition to cancer and immunodeficiency syndromes, and the analysis of the underlying mutations has lead to the identification of several proteins involved in NHEJ. However, these genetic studies have yielded little information on the mechanism of NHEJ, and while some of the protein factors identified possess the expected enzymatic or DNA-binding activities, the precise role of others remains unclear. Systems for cell-free NHEJ have been available for over 10 years, but the biochemical analysis of NHEJ has lagged behind the genetic analysis, and not a single protein factor required for NHEJ has been identified by biochemical purification and reconstitution of NHEJ activity. Here I review the current status of in vitro systems for NHEJ, summarize the results obtained and information gained, and discuss the outlook for biochemical approaches to study NHEJ.  相似文献   

16.
Enzymatic end-to end joining of DNA molecules   总被引:35,自引:0,他引:35  
A way to join naturally occurring DNA molecules, independent of their base sequence, is proposed, based upon the presumed ability of the calf thymus enzyme terminal deoxynucleotidyltransferase to add homopolymer blocks to the ends of double-stranded DNA. To test the proposal, covalently closed dimer circles of the DNA of bacteriophage P22 were produced from linear monomers. It is found that P22 DNA as isolated will prime the terminal transferase reaction, but not in a satisfactory manner. Pre-treatment of the DNA with λ exonuclease, however, improves its priming ability. Terminal transferase can then be used to add oligo(dA) blocks to the ends of one population of P22 DNA molecules and oligo(dT) blocks to the ends of a second population, which enables the two DNAs to anneal to one another to form dimer circles. Subsequent treatment with a system of DNA repair enzymes converts the circles to covalently closed molecules at high efficiency. It is demonstrated that the success of the joining system does not depend upon any obvious unique property of the P22 DNA.The joining system yields several classes of by-products, among them closed circular molecules with branches. Their creation can be explained on the basis of the properties of terminal transferase and the DNA repair enzymes.  相似文献   

17.
The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis.  相似文献   

18.
Cells of higher eucaryotes are known to possess mechanisms of illegitimate recombination which promote the joining between nonhomologous ends of broken DNA and thus may serve as basic tools of double-strand-break (DSB) repair. Here we show that cells of the fission yeast Schizosaccharomyces pombe also contain activities of nonhomologous DNA end joining resembling the ones found in higher eucaryotes. Nonhomologous end joining activities were detected by transformation of linearized self-replicating plasmids in yeast cells employing a selection procedure which only propagates transformants carrying recircularized plasmid molecules. Linear plasmid substrates were generated by duplicate restriction cuts carrying either blunt ends or 3' or 5' protruding single strands (PSS) of 4 nt which were efficiently joined in any tested combination. Sequence analysis of joined products revealed that junctional sequences were shortened by 1 to 14 nt. Two mechanisms may account for junction formation (i) loss of terminal nucleotides from PSS tails to produce blunt ends which can be joined to abutting ends and (ii) interactions of DNA termini at patches of sequence homologies (1-4 bp) by formation of overlap intermediates which are subsequently processed. A general feature of the yeast joining system is that end joining can only be detected in the absence of sequence homology between the linear substrate and host genome. In the presence of homology, nonhomologous DNA end joining is efficiently competed by activities of homologous recombination.  相似文献   

19.
The ability of HMGB1 protein to recognize bent DNA and to induce bending in linear duplex DNA defines HMGB1 as an architectural factor. It has already been demonstrated that the binding affinity of the protein for various bent DNA structures is enhanced upon in vivo acetylation at Lys2. Here we investigate how this modification of HMGB1 affects its ability to bend DNA. We report that the modified protein cannot bend short DNA fragments but, instead, stimulates joining of the same fragments via their ends. The same properties are exhibited in vivo by acetylated HMGB1 lacking its acidic tail. Further, in vitro acetylation of the truncated protein at Lys81 (possible upon tail removal only) restores the protein's bending ability, while the level of stimulation of DNA end joining is strongly reduced. We conclude, therefore, that the ability of HMGB1 to bend DNA or to stimulate end joining is modulated in vitro by acetylation. In an attempt to explain the properties of in vivo-acetylated HMGB1, its complexes with DNA have been analyzed by both protein-DNA cross-linking and atomic force microscopy. Unlike the parental protein, bound mainly within the internal sequences, acetylated HMGB1 binds preferentially to DNA ends. We propose that the loading of acetylated protein on DNA ends accounts for both the failure to bend DNA and the stimulation of DNA end joining.  相似文献   

20.
Non-homologous DNA end joining in the mature rat brain   总被引:6,自引:0,他引:6  
Recent evidence suggests that DNA double strand breaks (DSBs) are introduced in neurons during the course of normal development, and that repair of such DSBs is essential for neuronal survival. Here we describe a non-homologous DNA end joining (NHEJ) system in the adult rat brain that may be used to repair DNA DSBs. In the brain NHEJ system, blunt DNA ends are joined with lower efficiency than cohesive or non-matching protruding ends. Moreover, brain NHEJ is blocked by DNA ligase inhibitors or by dATP and can occur in the presence or absence of exogenously added ATP. Comparison of NHEJ activities in several tissues showed that brain and testis share similar mechanisms for DNA end joining, whereas the activity in thymus seems to utilize different mechanisms than in the nervous system. The developmental profile of brain NHEJ showed increasing levels of activity after birth, peaking at postnatal day 12 and then gradually decreasing along with age. Brain distribution analysis in adult animals showed that NHEJ activity is differentially distributed among different regions. We suggest that the DNA NHEJ system may be utilized in the postnatal brain for the repair of DNA double strand breaks introduced within the genome in the postnatal brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号