首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of glutamate receptors in GABA release in ischemia was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice. For in vitro ischemia, the slices were superfused in glucose-free media under nitrogen. Ionotropic glutamate receptor agonists failed to affect the ischemia-induced basal GABA release at either age. The K(+)-stimulated release in the immature hippocampus was potentiated by N-methyl-D-aspartate receptors, whereas in adults this release was reduced by both kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor activation. The group I metabotropic receptor agonist (1+/-)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal ischemic GABA release in a receptor-mediated manner in adults, this being concordant with the positive modulation of GABAergic neurotransmission by group I metabotropic glutamate receptors. (1 +/-)-1-Aminocyclopentane-trans-1,3-dicarboxylate and (S)-3,5-dihydroxyphenylglycine also enhanced the K(+)-stimulated release in the developing hippocampus in a receptor-mediated manner. Because group I receptors generally increase neuronal excitability, the enhanced GABA release may attenuate hyperexcitation or strengthen inhibition, being thus neuroprotective, particularly under ischemic conditions. Group III metabotropic glutamate receptors were not at all involved in ischemic GABA release in the immature mice, but in adults their activation by O-phospho-L-serine potentiated the basal release and reduced the K(+)-stimulated release. These opposite effects were abolished by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Metabotropic glutamate receptors, namely group I and III receptors, are able to modify the release of GABA from hippocampal slices under ischemic conditions, both positive and negative effects being discernible, depending on the age and type of receptor activated.  相似文献   

2.
Summary The inhibitory amino acid taurine has been held to function as an osmoregulator and modulator of neural activity, being particularly important in the immature brain. lonotropic glutamate receptor agonists are known markedly to potentiate taurine release. The effects of different metabotropic glutamate receptor (mGluR) agonists and antagonists on the basal and K+-stimulated release of [3H]taurine from hippocampal slices from 3-month-old (adult) and 7-day-old mice were now investigated using a superfusion system. Of group I metabotropic glutamate receptor agonists, quisqualate potentiated basal taurine release in both age groups, more markedly in the immature hippocampus. This action was not antagonized by the specific antagonists of group I but by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which would suggest an involvement of ionotropic glutamate receptors. (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated the basal release by a receptor-mediated mechanism in the immature hippocampus. The group II agonist (2S, 2R, 3R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG IV) markedly potentiated basal taurine release at both ages. These effects were antagonized by dizocilpine, indicating again the participation of ionotropic receptors. Group III agonists slightly potentiated basal taurine release, as did several antagonists of the three metabotropic receptor groups. Potassium-stimulated (50 mM K+) taurine release was generally significantly reduced by mGluR agents, mainly by group I and II compounds. This may be harmful to neurons in hyperexcitatory states. On the other hand, the potentiation by mGluRs of basal taurine release, particularly in the immature hippocampus, together with the earlier demonstrated pronounced enhancement by activation of ionotropic glutamate receptors, may protect neurons against excitotoxicity.Abbreviations ACPD (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate - AIDA (RS)-1-aminoindan-1,5-dicarboxylate - AMPA 2-amino-3-hydroxy05-methyl-4-isoxazolepropionate - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - CPPG (RS)-2-cyclopropyl-4-phosphonophenylglycine - DCG IV (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine - DHPG (S)-3,5-dihydroxyphenylglycine - EGLU (2S)-2-ethylglutamate - L-AP3 L(+)-2-amino-3-phosphonopropionate - L-AP4 L(+)-2-amino-4-phosphonobutyrate - L-AP6 L(+)-2-amino-6-phosphonohexanoate - L-SOP O-phospho-L-serine - MPPG (RS)-2-methyl-4-phosphonophenylglycine - MSOP (RS)-2-methylserine-O-phosphate - MSOPPE (RS)-2-methylserine-O-phosphate monophenyl ester - MTPG (RS)-2-methyl-4-tetrazolylphenylglycine - NBQX 6-nitro-7-sulphamoyl[f]quinoxaline-2,3-dione - NMDA N-methyl-D-aspartate - QA quisqualate - S-3C4H-PG (S)-3-carboxy-4-hydroxyphenylglycine - S-4C-PG (S)-4-carboxyphenylglycine; - S-MCGP (S)-2-methyl-4-carboxyphenylglycine  相似文献   

3.
The effects of metabotropic glutamate receptor agonists on the basal and potassium (50 mM K+)-stimulated release of [3H]GABA from mouse hippocampal slices were investigated using a superfusion system. The group I agonist (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal GABA release and reduced the K+-evoked release by a mechanism antagonized by (RS)-1-aminoindan-1,5-dicarboxylate in both cases. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine failed to have any effect on the basal release, but inhibited the stimulated release. This inhibition was not affected by the antagonist (2S)-2-ethylglutamate. The group III agonists L(+)-amino-4-phosphonobutyrate and O-phospho-L-serine inhibited the basal GABA release, which effects were blocked by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Moreover, the suppression of the K+-evoked release by L(+)2-amino-4-phosphonobutyrate was apparently receptor-mediated, being blocked by (RS)-2-cyclopropyl-4-phosphonophenylglycine. The results show that activation of metabotropic glutamate receptors of group I is able to potentiate the basal release of GABA, whereas activation of groups I and III receptors reduce K+-stimulated release in mouse hippocampal slices.  相似文献   

4.
The selective agonists for the metabotropic glutamate receptor and the ionotropic non-N-methyl-D-aspartate (NMDA) glutamate receptor, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), respectively, increased the cyclic GMP (cGMP) content in cerebellar slices prepared from adult rats. The ACPD-induced rise in cGMP level was blocked by compounds known to antagonize metabotropic glutamate receptors, such as DL-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyric acid, but not by ionotropic glutamate receptor antagonists, D-2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas the AMPA-induced rise in cGMP level was suppressed by CNQX. Both rises in cGMP level involved nitric oxide synthase (NOS), because NG-methyl-L-arginine (NMLA), an inhibitor of NOS, blocked both cGMP level rises, and excess L-arginine reversed the effect of NMLA. After lithium chloride treatment, which could exhaust phosphatidylinositol phosphates, ACPD no longer increased cGMP levels, whereas AMPA was still effective. In a calcium-free medium, ACPD still induced a rise in cGMP level, whereas AMPA did not. When the molecular layer was isolated to determine the cGMP content separately from that in the rest of the cerebellar cortex, it was found that ACPD raised the cGMP level mainly in the molecular layer, whereas AMPA raised it in both sections.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The release of the inhibitory neurotransmitter GABA is generally enhanced under potentially cell-damaging conditions. The properties and regulation of preloaded [3H]GABA release from mouse hippocampal slices were now studied in free radical-containing medium in a superfusion system. Free radical production was induced by 0.01% of H2O2 in the medium. H2O2 markedly potentiated GABA release, which was further enhanced about 1.5-fold by K+ stimulation (50 mM). In Ca2+-free media this stimulation was not altered, indicating that the release was mostly Ca2+-independent. Moreover, omission of Na+ increased the release, suggesting that it is mediated by Na+-dependent transporters operating outwards, a conception confirmed by the enhancement with GABA homoexchange. Inhibition of the release with the ion channel inhibitors diisothiocyanostilbene-2,2′-disulphonate and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonate indicates that Cl channels also participate in the process. This release was not modified by the adenosine receptor (A1 and A2a) agonists and ionotropic glutamate receptor agonists kainate, N-methy-d-aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, whereas the agonists of metabotropic glutamate receptors of group I [(S)-3,5-dihydroxyphenylglycine] and of group II [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] enhanced it by receptor-mediated mechanisms, the effects being abolished by their respective antagonists. The group III agonist l(+)-2-amino-4-phosphonobutyrate reduced the evoked GABA release, but this was not affected by the antagonist. Furthermore, the release was reduced by activation of protein kinase C by 4β-phorbol 12-myristate 13-acetate and by inhibition of tyrosine kinase by genistein and of phoshoplipase by quinacrine. On the other hand, increasing cGMP levels with the phosphodiesterase inhibitor zaprinast, selective for PDE5, 6 and 9, and NO production with the NO-generating compounds hydroxylamine, sodium nitroprusside and S-nitroso-N-penicillamine enhanced the release. The regulation of GABA release induced by free radical production proved thus to be rather complex. Under potentially cell-damaging conditions, the potentiation of GABA release may be a mechanism to counteract hyperactivity and reduce the effects of excitatory amino acid release. On the other hand, reduction of GABA release could be harmful and contribute to excitotoxic damage and neuronal degeneration.  相似文献   

6.
Saransaari P  Oja SS 《Amino acids》2003,24(1-2):213-221
Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.  相似文献   

7.
Glutamate is the main excitatory transmitter in the brain stem, regulating many vital sensory and visceral processes. Taurine is inhibitory and functions as a neuromodulator and regulator of cell volumes in the brain, being especially important in the developing brain. Taurine release is markedly enhanced under ischemic conditions in many brain areas, providing protection against excitotoxicity. The involvement of glutamate receptors in the release of preloaded [3H]taurine was now characterized under ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice. The ionotropic glutamate receptor agonists N-methyl-d-aspartate, kainate, and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate had no effect on ischemic taurine release in the immature brain stem, whereas in adults the release was enhanced in a receptor-mediated manner. The metabotropic receptor agonists of group I, (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate and (S)-3,5-dihydroxyphenylglycine, potentiated both basal and K+-stimulated release in both age groups. The group III agonist l(+)-2-amino-4-phosphonobutyrate also enhanced the release. In both cases the effects were receptor-mediated, being reduced by the respective antagonists. The results show that activation of glutamate receptors in the ischemic brain stem generally enhances the release of taurine. This is beneficial to neurons in ischemia, offering protection against excitotoxicity and preventing neuronal damage.  相似文献   

8.
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+-containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved.  相似文献   

9.
Saransaari P  Oja SS 《Amino acids》1999,17(4):323-334
Summary The release of taurine from cultured cerebellar granule neurons was studied in different cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and in the presence of free radicals. The effects of both ionotropic and metabotropic glutamate receptor agonists on the release were likewise investigated. The release of [3H]taurine from the glutamatergic granule cells was increased by K+ (50mM) and veratridine (0.1 mM), the effect of veratridine being the greater. Hypoxia and ischemia produced an initial increase in release compared to normoxia but resulted in a diminished response to K. Hypoglycemia, oxidative stress and free radicals enhanced taurine release, and subsequent K treatment exhibited a correspondingly greater stimulation. A common feature of taurine release in all the bove conditions was a slow response to the stimulus evoked by K+ and particularly to that evoked by veratridine. All ionotropic glutamate receptor agonists potentiated taurine release, but only the action of kainate seemed to be receptor-mediated. Metabotropic receptor agonists of group I slightly stimulated the release. The prolonged taurine release seen in both normoxia and cell-damaging conditions may be of importance in maintaining homeostasis in the cerebellum and reducing excitability for a longer period than other neuroprotective mechanisms.Abbreviations AIDA (RS)-1-aminoindan-1,5-dicarboxylate - AMPA 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate - CNOX 6-cyano-7-nitroquinoxaline-2,3-dione - DCG IV (2S,2R,3R)-2-(2,3-dicarboxycyclo-propyl)glycine - DHPG (S)-3,5-dihydroxyphenylglycine - EGLU (2S)-2-ethylglutamate - L-AP3 L(+)-2-amino-3-phosphonopropionate - L-AP4 L(+)-2-amino-4-phosphonobutyrate - L-SOP o-phospho-l-serine - NBOX 6-nitro-7-sulphamoyl[f]quinoxaline-2,3-dione - NMDA n-methyl-d-aspartate - trans-ACPD (1S,3S)-1-aminocyclopentane-1,3-dicarboxylate  相似文献   

10.
The effects of glutamate agonists and their selective antagonists on the Ca2+-dependent and independent releases of [3H]GABA from rat coronal hippocampal slices were studied in a superfusion system. The Ca2+-dependent release evoked by glutamate, kainate and N-methyl-D-aspartate (NMDA) gradually declined with time despite the continuous presence of the agonists. Quisqualate (QA) caused a sustained release which exhibited no tendency to decline within the 20-min period of stimulation. This release was enhanced in Ca2+-free medium. The release evoked by QA in Ca2+-containing medium was significantly inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing that QA activates NMDA receptors directly or indirectly through (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. The inhibition of MK-801 was slightly diminished and that of CNQX totally abolished in Ca2+-free medium. Verapamil inhibited the QA-activated release in both Ca2+-containing and Ca2+-free media. The effect of QA but not that of AMPA was blocked in Ca2+-free medium by L(+)-2-amino-3-phosphonopropionate (L-AP3), a selective antagonist of the metabotropic glutamate receptor. It is suggested that the sustained release of GABA is also mediated partly by activation of metabotropic receptors and mobilization of Ca2+ from intracellular stores.  相似文献   

11.
Three major subtypes of glutamate receptors that are coupled to cation channels--N-methyl-D-aspartate (NMDA), kainate, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors--are known as ionotropic receptors in the mammalian CNS. Recently, an additional subtype that is coupled to GTP binding proteins and stimulates (or inhibits) metabolism of phosphoinositides has been proposed as a metabotropic receptor. Incubation of dispersed hippocampal cells from adult rats with glutamate or NMDA decreased forskolin-stimulated cyclic AMP (cAMP) accumulation; half-maximal effects were obtained with 5.6 +/- 2.2 and 6.4 +/- 2.3 microM, respectively. Kainate and quisqualate were less potent. The effect of glutamate was antagonized by 2,3-diaminopropionate and 2-amino-5-phosphonovalerate, NMDA/glutamate receptor antagonists, but not by 0.5 microM Joro spider toxin, a specific blocker of the AMPA receptor. The inhibitory effect of glutamate on cAMP formation was not blocked by 2 microM tetrodotoxin or by the absence of Ca2+. In hippocampal membranes, glutamate, similar to carbachol, inhibited adenylate cyclase activity in a GTP-dependent manner. These findings suggest that the glutamate inhibition of adenylate cyclase is direct and is not due to a result of the release of other neurotransmitters. The effect of glutamate on cAMP accumulation was observed in an assay medium containing 0.7 mM MgCl2, which is known to inhibit both ionotropic NMDA receptor/channels in the hippocampus and metabotropic NMDA receptors in the cerebellum. The inhibitory effect of glutamate was abolished by pertussis toxin treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In cultured rat hippocampal neurons, glutamate elevated the Ca(2+)-independent activity of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) through autophosphorylation when the neurons were incubated in Mg(2+)-free buffer, and this response was blocked by specific antagonists of the N-methyl-D-aspartate (NMDA) receptor. In addition, glutamate stimulated the transient translocation of protein kinase C (PKC) from the cytosol to the membrane fraction. This effect was not blocked by NMDA receptor antagonists but was partially blocked by DL-2-amino-3-phosphonopropionate. Quisqualate or trans-1-amoinocyclopentane-trans1,3-dicarboxylate produced a similar effect on the translocation of PKC. In the experiments with 32P-labeled cells, the phosphorylation of microtuble-associated protein 2 and synapsin I, as well as autophosphorylation of CaM kinase II, were found to be stimulated by exposure to glutamate. These results suggest that glutamate can activate CaM kinase II through the ionotropic NMDA receptor, which in turn increases the phosphorylation of microtuble-associated protein 2 and synapsin I. PKC was activated through the metabotropic glutamate receptor in the hippocampal neurons.  相似文献   

13.
A pharmacological characterization of the metabotropic glutamate receptor (MGR) was performed in striatal neurons. Among the excitatory amino acid receptor antagonists tested, only D, L-2-amino-3-phosphonopropionate (D, L-AP3) inhibited QA-induced inositol phosphate (InsP) formation in a competitive manner (mean pKi = 4.45 +/- 0.43, n = 4). However, this drug was a partial agonist of MGR since it stimulated the inositol-phosphate formation. We found that D, L-AP3 also inhibited NMDA-induced calcium increase, in a competitive manner (mean pIC50 = 4.34 +/- 0.22, n = 8, and mean pKi = 3.7 +/- 0.11 n = 5). 1 mM of the ionotropic agonists alpha-amino-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate (KA) or domoate (DO) (100 microM or higher) induced a significant InsP formation in striatal neurons. The InsP responses induced by all these agonists were totally blocked by the phorbol ester phorbol-12,13-dibutyrate (PdBu), but not by atropine or prazosin. Agonist-induced increases of intracellular calcium concentrations ([Ca2+]i) were insensitive to PdBu, suggesting that all these substances were able to stimulate the MGR in striatal neurons. Trans-1-amino-cyclopentyl-1,3-dicarboxylate (trans-ACPD) evoked dose-dependent inositol phosphate formations with an EC50 of 29 microM but had no significant effect on NMDA or AMPA receptors, as measured by the patch clamp technique. In the presence of 30 microM of AMPA, trans-ACPD induced a significant release of arachidonic acid (AA) in striatal neurons. No important AA release was observed by any of these agonists alone. 56 mM K+ did not mimic AMPA in this associative ionotropic/metabotropic effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: We have studied the effect of glutamate and the glutamatergic agonists N-methyl-d -aspartate (NMDA), kainate, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on [3H]GABA release from the external plexiform layer of the olfactory bulb. The GABA uptake blocker nipecotic acid significantly increased the basal [3H]GABA release and the release evoked by a high K+ concentration, glutamate, and kainate. The glutamate uptake blocker pyrrolidine-2,4-dicarboxylate (2,4-PDC) inhibited by 50% the glutamate-induced [3H]GABA release with no change in the basal GABA release. The glutamatergic agonists NMDA, kainate, and AMPA also induced a significant [3H]GABA release. The presence of glycine and the absence of Mg2+ have no potentiating effect on NMDA-stimulated release; however, when the tissue was previously depolarized with a high K+ concentration, a significant increase in the NMDA response was observed that was potentiated by glycine and inhibited by the NMDA receptor antagonist 2-amino-5-phosphonoheptanoic acid (AP-7). The kainate and AMPA effects were antagonized by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by AP-7. The glutamate effect was also inhibited by CNQX but not by the NMDA antagonist 2-amino-5-phosphonopentanoic acid (AP-5); nevertheless, in the presence of glycine, [3H]GABA release evoked by glutamate was potentiated, and this response was significantly antagonized by AP-5. Tetrodotoxin inhibited glutamate- and kainate-stimulated [3H]GABA release but not the NMDA-stimulated release. The present results show that in the external plexiform layer of the olfactory bulb, glutamate is stimulating GABA release through a presynaptic, receptor-mediated mechanism as a mixed agonist on NMDA and non-NMDA receptors; glutamate is apparently also able to induce GABA release through heteroexchange.  相似文献   

15.
Metabotropic glutamate receptors have recently been envisaged as involved in both potentiation and prevention of ischemic and excitotoxic neuronal damage. The release of the inhibitory amino acid taurine is markedly enhanced in ischemia in both the immature and mature mouse hippocampus. The modulation of [3H]taurine release by metabotropic receptor agonists and antagonists was studied in hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. Agonists of group I, II and III metabotropic glutamate receptors generally reduced the ischemia-induced release in adult animals. In the immature hippocampus the group I agonists (S)-3,5-dihydroxyphenylglycine and (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate, which mainly enhance neuronal excitation, potentiated initial taurine release in ischemia. Ionotropic glutamate receptor agonists also enhance the ischemia-induced taurine release in developing mice. This glutamate-activated taurine release may thus constitute an important protective mechanism against excitotoxicity in the immature hippocampus.  相似文献   

16.
The effects of dithiothreitol (DTT) and, reduced (GSH) and oxidized (GSSG), glutathione on the release of [3H]GABA evoked by glutamate and its agonists were studied in rat hippocampal slices. DTT had no effect on the basal release of [3H]GABA but it enhanced and prolonged the glutamate agonist-evoked release. This effect was abolished by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801), a noncompetitive NMDA antagonist, and blocked by Mg2+ ions. It was only slightly attenuated by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, and not affected by -(+)-2-amino-3-phosphonopropionate ( -AP3), a selective antagonist of the metabotropic glutamate receptor. The effect of DTT on the NMDA-evoked release of GABA was only slightly affected by extracellular Ca2+ but completely blocked by verapamil even in the absence of Ca2+. GSH and GSSG attenuated or abolished the effects of DTT on the agonist-induced release of [3H]GABA. The results imply that the enhanced and prolonged release of GABA evoked by the coexistence of DTT and excitatory amino acids and attenuated by endogenous GSH and GSSG is a consequence of sustained activation of the NMDA receptor-governed ionophores, which contain functional thiol groups. DTT, GSH and GSSG may regulate the redox state and accessibility of these groups. In addition to the influx of extracellular Ca2+, DTT mobilizes Ca2+ from intracellular pools distinct from those regulated by metabotropic glutamate receptors.  相似文献   

17.
Autoradiographical studies revealed that 10 nM [3H]N-acetyl-aspartyl-glutamate (NAAG) labelled grey matter structures, particularly in the hippocamus, cerebral neocortex, striatum, septal nuclei and the cerebellar cortex. The binding was inhibited by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG IV), an agonist at group II metabotropic glutamate receptors (mGluR II). (RS)-alpha-Methyl-4-tetrazolylphenylglycine (MTPG), (RS)-alpha-cyclopropyl-4-phosphonoglycine (CPPG) and (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE), all antagonists at mGluR II and mGluR III, also inhibited [3H]NAAG binding. Other inhibitors were (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (ACPD), a broad-spectrum mGluR agonist with preference for groups I and II and the mGluR I agonists/mGluR II antagonists (S)-3-carboxy-4-hydroxyphenylglycine (3,4-CHPG) and (S)-4-carboxy-3-hydroxyphenylglycine (4,3-CHPG). Neither the mGluR I specific agonist (S)-dihydroxyphenylglycine nor any of the ionotropic glutamate receptor ligands such as kainate, AMPA and MK-801 had strong effects (except for the competitive NMDA antagonist CGS 19755, which produced 20-40% inhibition at 100 microM) suggesting that, at low nM concentrations, [3H]NAAG binds predominantly to metabotropic glutamate receptors, particularly those of the mGluR II type. Several studies have indicated that NAAG can interact with mGluR II and the present study supports this notion by demonstrating that sites capable of binding NAAG at low concentrations and displaying pharmacological characteristics of mGluR II exist in the central nervous tissue. Furthermore, the results show that autoradiography of [3H]NAAG binding can be used to quantify the distribution of such sites in distinct brain regions and study their pharmacology at the same time.  相似文献   

18.
19.
The presynaptic regulation of striatal glutamate transmission was investigated using D-[3H]aspartate and mouse striatal slices. Functional changes in voltage-dependent and glutamate receptor-gated ion channels were elicited by pharmacologically modifying intracellular cyclic AMP formation via G-protein-coupled receptor stimulation. The kainate (KA)-evoked release was potentiated by the stimulatory G-protein (G(s))-coupled beta-adrenoceptor agonist isoproterenol (ISO) in a concentration-dependent manner. This effect was mimicked by the specific calmodulin (CaM) antagonists trifluoperazine and calmidazolium. Tetrodotoxin (TTX), a blocker of Na(+) channels, did not affect the basal release but inhibited to the same degree the releases evoked by kainate alone and by kainate and isoproterenol together. Vinpocetine, a blocker of voltage-dependent Na(+) channels, did not alter the basal or the evoked release. The Na(+) channel activator veratridine enhanced the basal release in a concentration-dependent manner and isoproterenol attenuated this effect. The opposite effects of isoproterenol on the kainate- and veratridine-evoked releases may reflect prevention of the cyclic AMP-protein kinase A (PKA) phosphorylation cascade in striatal glutamatergic signal transduction. In addition, the calmidazolium-induced potentiation of kainate-evoked release was thwarted by LY354740 and L-2-amino-4-phosphonobutanoate, agonists of the inhibitory G-protein (G(i))-coupled metabotropic group II and III glutamate receptors (mGluRs). Vinpocetine, which inhibits the CaM-dependent phosphodiesterase (PDE1), was likewise inhibitory. In turn, selective agonists and antagonists of the G(q)-protein-coupled group I mGluRs and (S)-3,5-dihydroxyphenylglycine (3,5-DHPG) and (RS)-1-aminoindan-1,5-dicarboxylate (AIDA), which modulate the intracellular Ca(2+) levels, did not alter the kainate-evoked release.The beta-adrenoceptor-mediated cyclic AMP accumulation seems to downregulate Na(+) channels but to enhance glutamate release by means of upregulation of kainate receptors. This regulation of presynaptic ligand- and voltage-gated ion channels is affected by the cAMP-protein kinase A-dependent phosphorylation cascade and controlled by G(i)-protein-coupled mGluRs.  相似文献   

20.
The cytotoxic action of the excitatory amino acids (EAAs) glutamate, N-methyl- D-aspartate (NMDA), quisqualate (QA), kainate (KA) and (RS)-2-amino-3(3-hydoxy-5-methylisoxazol-4-yl) propionate (AMPA) was studied in cerebral cortical neurons in culture. The pharmacological profile of these actions was characterized using the NMDA selective antagonist D-(-)-2-amino-5- phosphonopentanoate (APV) and the non-NMDA selective antagonists 6.7- dinitroquinoxaline-2,3-dione (DNQX), 2-amino-3[3-(carboxymethoxy)-5- methylisoxazol-4-yl]-propionate (AMOA) and 2-amino-3-[2-(3-hydroxy-5- methylisoxazol-4-yl)methyl-3-methyl-3-oxoisoxazolin-4-yl] propionate (AMNH). The role of intracellular Ca++ homeostasis and cGMP production for development of EAA mediated cytotoxicity was assessed by measurements of changes in [Ca++]i using the flourescent Ca++ chelator Fluo-3 and in cGMP concentrations using a conventional radioimmune assay. It was found that glutamate toxicity involves both NMDA and non-NMDA receptor activation and that aberrations in Ca++ homeostasis brought about by Ca++ influx and/or liberation of Ca++ from internal stores aare important for development of toxicity. The drug dantrolene which prevents release of Ca++ from such stores can prevent toxicity induced by glutamate, NMDA and QA completely but has no effect on KA and AMPA toxicity. Changes in cGMP levels appear to play a role for development of glutamate, NMDA and KA toxicity but does not seem to be involved in that triggered by QA and AMPA.Abbreviations AMNH: (2-amino-3-[2-(3-hydroxy-5-methylisoxazol-4-yl)methyl-5-methyl-3-oxoisoxazolin-4-yl]propionate) - AMOA: (2-amino-3[3-(carboxymethoxy)-5-methylisoxazol-4-yl]propinate) - AMPA: ( (RS) —2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinate) - APV: (D-(-)-2-amino-5-phosphonopentanoate) - DNQX: (6,7-dinitroquinoxaline-2,3-dione) - KA (kinate) - QA (quisqualate)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号