首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

2.
Skeletal muscle undergoes remarkable adaptations in response to chronic decreases in contractile activity, such as a loss of muscle mass, decreases in both mitochondrial content and function, as well as the activation of apoptosis. Although these adaptations are well known, questions remain regarding the signaling pathways that mediated these changes. Autophagy is an organelle turnover pathway that could contribute to these adaptations. The purpose of this study was to determine whether denervation-induced muscle disuse would result in the activation of autophagy gene expression in both wild-type (WT) and Bax/Bak double knockout (DKO) animals, which display an attenuated apoptotic response. Denervation caused a reduction in muscle mass for WT and DKO animals; however, there was a 40% attenuation in muscle atrophy in DKO animals. Mitochondrial state 3 respiration was significantly reduced, and reactive oxygen species production was increased by two- to threefold in both WT and DKO animals. Apoptotic markers, including cytosolic AIF and DNA fragmentation, were elevated in WT, but not in DKO animals following denervation. Autophagy proteins including LC3II, ULK1, ATG7, p62, and Beclin1 were increased similarly following denervation for both WT and DKO. Interestingly, denervation markedly increased the localization of LC3II to subsarcolemmal mitochondria, and this was more pronounced in the DKO animals. Thus denervation-induced muscle disuse activates both apoptotic and autophagic signaling pathways in muscle, and autophagic protein expression does not exhibit a compensatory increase in the presence of attenuated apoptosis. However, the absence of Bax and Bak may represent a potential signal to trigger mitophagy in muscle.  相似文献   

3.
《Autophagy》2013,9(4):631-641
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

4.
5.
In cells undergoing cell-intrinsic apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically marks an irreversible step in the cell death process. However, in some cases, a subpopulation of treated cells can exhibit a sublethal response, termed “minority MOMP.” In this phenomenon, the affected cells survive, despite a low level of caspase activation and subsequent limited activation of the endonuclease caspase-activated DNase (DNA fragmentation factor subunit beta). Consequently, these cells can experience DNA damage, increasing the probability of oncogenesis. However, little is known about the minority MOMP response. To discover genes that affect the MOMP response in individual cells, we conducted an imaging-based phenotypic siRNA screen. We identified multiple candidate genes whose downregulation increased the heterogeneity of MOMP within single cells, among which were genes related to mitochondrial dynamics and mitophagy that participate in the mitochondrial quality control (MQC) system. Furthermore, to test the hypothesis that functional MQC is important for reducing the frequency of minority MOMP, we developed an assay to measure the clonogenic survival of caspase-engaged cells. We found that cells deficient in various MQC genes were indeed prone to aberrant post-MOMP survival. Our data highlight the important role of proteins involved in mitochondrial dynamics and mitophagy in preventing apoptotic dysregulation and oncogenesis.  相似文献   

6.
7.
Sarcopenia is one of the main factors contributing to the disability of aged people. Among the possible molecular determinants of sarcopenia, increasing evidences suggest that chronic inflammation contributes to its development. However, a key unresolved question is the nature of the factors that drive inflammation during aging and that participate in the development of sarcopenia. In this regard, mitochondrial dysfunction and alterations in mitophagy induce inflammatory responses in a wide range of cells and tissues. However, whether accumulation of damaged mitochondria (MIT) in muscle could trigger inflammation in the context of aging is still unknown. Here, we demonstrate that BCL2 interacting protein 3 (BNIP3) plays a key role in the control of mitochondrial and lysosomal homeostasis, and mitigates muscle inflammation and atrophy during aging. We show that muscle BNIP3 expression increases during aging in mice and in some humans. BNIP3 deficiency alters mitochondrial function, decreases mitophagic flux and, surprisingly, induces lysosomal dysfunction, leading to an upregulation of Toll‐like receptor 9 (TLR9)‐dependent inflammation and activation of the NLRP3 (nucleotide‐binding oligomerization domain (NOD)‐, leucine‐rich repeat (LRR)‐, and pyrin domain‐containing protein 3) inflammasome in muscle cells and mouse muscle. Importantly, downregulation of muscle BNIP3 in aged mice exacerbates inflammation and muscle atrophy, and high BNIP3 expression in aged human subjects associates with a low inflammatory profile, suggesting a protective role for BNIP3 against age‐induced muscle inflammation in mice and humans. Taken together, our data allow us to propose a new adaptive mechanism involving the mitophagy protein BNIP3, which links mitochondrial and lysosomal homeostasis with inflammation and is key to maintaining muscle health during aging.  相似文献   

8.
The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.  相似文献   

9.
Glucocorticoids, such as dexamethasone, enhance protein breakdown via ubiquitin–proteasome system. However, the role of autophagy in organelle and protein turnover in the glucocorticoid-dependent atrophy program remains unknown. Here, we show that dexamethasone stimulates an early activation of autophagy in L6 myotubes depending on protein kinase, AMPK, and glucocorticoid receptor activity. Dexamethasone increases expression of several autophagy genes, including ATG5, LC3, BECN1, and SQSTM1 and triggers AMPK-dependent mitochondrial fragmentation associated with increased DNM1L protein levels. This process is required for mitophagy induced by dexamethasone. Inhibition of mitochondrial fragmentation by Mdivi-1 results in disrupted dexamethasone-induced autophagy/mitophagy. Furthermore, Mdivi-1 increases the expression of genes associated with the atrophy program, suggesting that mitophagy may serve as part of the quality control process in dexamethasone-treated L6 myotubes. Collectively, these data suggest a novel role for dexamethasone-induced autophagy/mitophagy in the regulation of the muscle atrophy program.  相似文献   

10.
The p97/VCP ATPase complex facilitates the extraction and degradation of ubiquitinated proteins from larger structures. We therefore studied if p97 participates to the rapid degradation of myofibrillar proteins during muscle atrophy. Electroporation of a dominant negative p97 (DNp97), but not the WT, into mouse muscle reduced fibre atrophy caused by denervation and food deprivation. DNp97 (acting as a substrate-trap) became associated with specific myofibrillar proteins and its cofactors, Ufd1 and p47, and caused accumulation of ubiquitinated components of thin and thick filaments, which suggests a role for p97 in extracting ubiquitinated proteins from myofibrils. DNp97 expression in myotubes reduced overall proteolysis by proteasomes and lysosomes and blocked the accelerated proteolysis induced by FoxO3, which is essential for atrophy. Expression of p97, Ufd1 and p47 increases following denervation, at times when myofibrils are rapidly degraded. Surprisingly, p97 inhibition, though toxic to most cells, caused rapid growth of myotubes (without enhancing protein synthesis) and hypertrophy of adult muscles. Thus, p97 restrains post-natal muscle growth, and during atrophy, is essential for the accelerated degradation of most muscle proteins.  相似文献   

11.
Mitochondria are highly dynamic organelles of crucial importance to the proper functioning of neuronal, cardiac and other cell types dependent upon aerobic efficiency. Mitochondrial dysfunction has been implicated in numerous human conditions, to include cancer, metabolic diseases, neurodegeneration, diabetes, and aging. In recent years, mitochondrial turnover by macroautophagy (mitophagy) has captured the limelight, due in part to discoveries that genes linked to Parkinson disease regulate this quality control process. A rapidly growing literature is clarifying effector mechanisms that underlie the process of mitophagy; however, factors that regulate positive or negative cellular outcomes have been less studied. Here, we review the literature on two major pathways that together may determine cellular adaptation vs. cell death in response to mitochondrial dysfunction. Mitochondrial biogenesis and mitophagy represent two opposing, but coordinated processes that determine mitochondrial content, structure, and function. Recent data indicate that the capacity to undergo mitochondrial biogenesis, which is dysregulated in disease states, may play a key role in determining cell survival following mitophagy-inducing injuries. The current literature on major pathways that regulate mitophagy and mitochondrial biogenesis is summarized, and mechanisms by which the interplay of these two processes may determine cell fate are discussed. We conclude that in primary neurons and other mitochondrially dependent cells, disruptions in any phase of the mitochondrial recycling process can contribute to cellular dysfunction and disease. Given the emerging importance of crosstalk among regulators of mitochondrial function, autophagy, and biogenesis, signaling pathways that coordinate these processes may contribute to therapeutic strategies that target or regulate mitochondrial turnover and regeneration.  相似文献   

12.
Mitochondrial damage is a critical contributor to stroke‐induced injury, and mitochondrial quality control (MQC) is the cornerstone of restoring mitochondrial homeostasis and plays an indispensable role in alleviating pathological process of stroke. Mitochondria quality control promotes neuronal survival via various adaptive responses for preserving mitochondria structure, morphology, quantity and function. The processes of mitochondrial fission and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins and metabolites. The process of mitophagy is responsible for the degradation and recycling of damaged mitochondria. This review aims to offer a synopsis of the molecular mechanisms involved in MQC for recapitulating our current understanding of the complex role that MQC plays in the progression of stroke. Speculating on the prospect that targeted manipulation of MQC mechanisms may be exploited for the rationale design of novel therapeutic interventions in the ischaemic stroke and haemorrhagic stroke. In the review, we highlight the potential of MQC as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.  相似文献   

13.
Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1’s deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-1α (PGC-1α) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1’s role in caloric restriction and impacts on longevity. The notion of Sirt1’s regulation of PGC-1α activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1’s regulation of mitochondrial biogenesis and turnover, in relation to PGC-1α deacetylation and various aspects of cellular physiology and disease.  相似文献   

14.
New treatments are needed to protect the myocardium against the detrimental effects of acute ischaemia/reperfusion (IR) injury following an acute myocardial infarction (AMI), in order to limit myocardial infarct (MI) size, preserve cardiac function and prevent the onset of heart failure (HF). Given the critical role of mitochondria in energy production for cardiac contractile function, prevention of mitochondrial dysfunction during acute myocardial IRI may provide novel cardioprotective strategies. In this regard, the mitochondrial fusion and fissions proteins, which regulate changes in mitochondrial morphology, are known to impact on mitochondrial quality control by modulating mitochondrial biogenesis, mitophagy and the mitochondrial unfolded protein response. In this article, we review how targeting these inter‐related processes may provide novel treatment targets and new therapeutic strategies for reducing MI size, preventing the onset of HF following AMI.  相似文献   

15.
16.
Changes in mitochondrial function with age vary between different muscle types, and mechanisms underlying this variation remain poorly defined. We examined whether the rate of mitochondrial protein turnover contributes to this variation. Using heavy label proteomics, we measured mitochondrial protein turnover and abundance in slow‐twitch soleus (SOL) and fast‐twitch extensor digitorum longus (EDL) from young and aged mice. We found that mitochondrial proteins were longer lived in EDL than SOL at both ages. Proteomic analyses revealed that age‐induced changes in protein abundance differed between EDL and SOL with the largest change being increased mitochondrial respiratory protein content in EDL. To determine how altered mitochondrial proteomics affect function, we measured respiratory capacity in permeabilized SOL and EDL. The increased mitochondrial protein content in aged EDL resulted in reduced complex I respiratory efficiency in addition to increased complex I‐derived H2O2 production. In contrast, SOL maintained mitochondrial quality, but demonstrated reduced respiratory capacity with age. Thus, the decline in mitochondrial quality with age in EDL was associated with slower protein turnover throughout life that may contribute to the greater decline in mitochondrial dysfunction in this muscle. Furthermore, mitochondrial‐targeted catalase protected respiratory function with age suggesting a causal role of oxidative stress. Our data clearly indicate divergent effects of age between different skeletal muscles on mitochondrial protein homeostasis and function with the greatest differences related to complex I. These results show the importance of tissue‐specific changes in the interaction between dysregulation of respiratory protein expression, oxidative stress, and mitochondrial function with age.  相似文献   

17.
Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR-382-5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA-382-5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA-382-5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35-fold, p < 0.01) and an induction of HSP60 protein (1.31-fold, p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR-382-5p reduced basal oxygen consumption rate by 14% ( p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR-382-5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.  相似文献   

18.
Mitophagy is an essential process for mitochondrial quality control and turnover. It is activated by two distinct pathways, one dependent on ubiquitin and the other dependent on receptors including FUNDC1. It is not clear whether these pathways coordinate to mediate mitophagy in response to stresses, or how mitophagy receptors sense stress signals to activate mitophagy. We find that the mitochondrial E3 ligase MARCH5, but not Parkin, plays a role in regulating hypoxia‐induced mitophagy by ubiquitylating and degrading FUNDC1. MARCH5 directly interacts with FUNDC1 to mediate its ubiquitylation at lysine 119 for subsequent degradation. Degradation of FUNDC1 by MARCH5 expression desensitizes mitochondria to hypoxia‐induced mitophagy, whereas knockdown of endogenous MARCH5 significantly inhibits FUNDC1 degradation and enhances mitochondrial sensitivity toward mitophagy‐inducing stresses. Our findings reveal a feedback regulatory mechanism to control the protein levels of a mitochondrial receptor to fine‐tune mitochondrial quality.  相似文献   

19.
Maintenance of mitochondrial quality is essential for skeletal muscle function and overall health. Exercise training elicits profound adaptations to mitochondria to improve mitochondrial quality in skeletal muscle. We have recently demonstrated that acute exercise promotes removal of damaged/dysfunctional mitochondria via mitophagy in skeletal muscle during recovery through the Ampk-Ulk1 signaling cascade. In this Extra View, we explore whether Pink1 is stabilized on mitochondria following exercise as the signal for mitophagy. We observed no discernable presence of Pink1 in isolated mitochondria from skeletal muscle at any time point following acute exercise, in contrast to clear evidence of stabilization of Pink1 on mitochondria in HeLa cells following treatment with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Taken together, we conclude that Pink1 is not involved in exercise-induced mitophagy in skeletal muscle.  相似文献   

20.
《Journal of molecular biology》2019,431(15):2674-2686
Cancer cachexia is a multifactorial syndrome characterized by anorexia, weight loss and muscle wasting that impairs patients' quality of life and survival. Aim of this work was to evaluate the impact of either autophagy inhibition (knocking down beclin-1) or promotion (overexpressing TP53INP2/DOR) on cancer-induced muscle wasting. In C26 tumor-bearing mice, stress-induced autophagy inhibition was unable to rescue the loss of muscle mass and worsened muscle morphology. Treating C26-bearing mice with formoterol, a selective β2-agonist, muscle sparing was paralleled by reduced static autophagy markers, although the flux was maintained. Conversely, the stimulation of muscle autophagy exacerbated muscle atrophy in tumor-bearing mice. TP53INP2 further promoted atrogene expression and suppressed mitochondrial dynamics-related genes. Excessive autophagy might impair mitochondrial function through mitophagy. Consistently, tumor-induced mitochondrial dysfunction was detected by reduced ex vivo muscle fiber respiration. Overall, the results evoke a central role for muscle autophagy in cancer-induced muscle wasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号