首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramet-pairs of Potentilla reptans L. var.sericophylla Franch from forest gap and forest understory were subjected to unshading, shading and partial shading treatments in a pot experiment. The genet biomass, total length of stolons, number of ramets, specific stolon weight, petiole length and specific petiole weight of the plant species under the shaded condition were smaller than those under the unshaded condition. The stolon internode length did not respond to the various treatments. In the plants from the forest gap, the petiloes of ramet grown in the shaded patch were longer as connected to plant part in the unshaded patch than as connected to plant part under the same shaded condition. Such modification of local response of ramet petiole to shading due to physiological integration was not observed in the plants from the understory. There was no effect of connection to ramets in shaded patches on the local response of the rest ramet characters to the partial unshading.  相似文献   

2.
匍匐茎草本绢毛匍匐委陵菜对局部遮荫的克隆可塑性   总被引:1,自引:0,他引:1  
采自林窗和林内生境的绢毛匍匐委陵菜 (PotentillareptansL .var.sericophyllaFranch)“分株对”(即由一匍匐茎节间相连着的两个分株 ,其一为“目标分株” ,另一为“相连分株”)在一户外实验中经历了全不遮荫、全部遮荫和局部遮荫处理。该植物的基株生物量、匍匐茎总长度、分株数、匍匐茎比节间重、叶柄长、比叶柄重在遮荫条件下较小。匍匐茎节间长度没有对遮荫处理发生反应。在局部遮荫处理 ,遮荫斑块的分株的叶柄长度由于连着未遮荫斑块中分株而变得更长。这种克隆整合对克隆形态可塑性的修饰作用只在林窗生境来源的实验植物中观察到。其他克隆生长和克隆形态特征的可塑性在不同生境来源的实验植物间没有差异。  相似文献   

3.
Summary We investigated relationships between light availability, diel acid fluctuation, and resource storage in the arborescent cactus Opuntia excelsa growing in western Mexico. We compared canopy and understory individuals from a deciduous forest as well as open-grown plants of the same approximate size as those in the understory. During the wet season light availability and daily fluctuations in titratable acidity (an index of carbon uptake) were lower in the understory than in unshaded habitats. In the dry season all plants had reduced levels of acid fluctuation, with the smallest individuals, regardless of habitat, showing the greatest reduction. These data suggest that light availability in the forest understory constrains carbon assimilation during the wet season, but that a factor associated with plant size, possibly water status, limits carbon gain during the dry season. Plants in all habitats remained physiologically active for at least five months into the dry season. We suggest that this was possible due to the maintenance of constant concentrations of water and nitrogen in the photosynthetically active chlorenchyma. Parenchyma in terminal cladodes showed a different seasonal pattern of resource storage; water content and nitrogen concentration were reduced from the wet to the dry season in the parenchyma. Using the parenchyma to supply photosynthetic tissues during times of reduced resource availability allows O. excelsa to assimilate carbon during times of the year when most other trees in the forest are leafless.  相似文献   

4.
Few field experiments have examined the effects of both resource availability and propagule pressure on plant community invasibility. Two non-native forest species, a herb and a shrub ( Hesperis matronalis and Rhamnus cathartica , respectively), were sown into 60 1-m2 sub-plots distributed across three plots. These contained reconstructed native plant communities in a replaced surface soil layer in a North American forest interior. Resource availability and propagule pressure were manipulated as follows: understorey light level (shaded/unshaded), nutrient availability (control/fertilized), and seed pressures of the two non-native species (control/low/high). Hesperis and Rhamnus cover and the above-ground biomass of Hesperis were significantly higher in shaded sub-plots and at greater propagule pressures. Similarly, the above-ground biomass of Rhamnus was significantly increased with propagule pressure, although this was a function of density. In contrast, of species that seeded into plots from the surrounding forest during the growing season, the non-native species had significantly greater cover in unshaded sub-plots. Plants in these unshaded sub-plots were significantly taller than plants in shaded sub-plots, suggesting a greater fitness. Total and non-native species richness varied significantly among plots indicating the importance of fine-scale dispersal patterns. None of the experimental treatments influenced native species. Since the forest seed bank in our study was colonized primarily by non-native ruderal species that dominated understorey vegetation, the management of invasions by non-native species in forest understoreys will have to address factors that influence light levels and dispersal pathways.  相似文献   

5.
Bottomland hardwood forests of the southeastern United States have declined in extent since European settlement. Forest restoration activities over the past decade, however, have driven recent changes in land use through an intensified afforestation effort on former agricultural land. This intense afforestation effort, particularly in the Lower Mississippi Alluvial Valley, has generated a demand for alternative afforestation systems that accommodate various landowner objectives through restoration of sustainable forests. We are currently studying an afforestation system that involves initial establishment of the rapidly growing native species eastern cottonwood (Populus deltoides Bartr. ex Marsh.), followed by enrichment of the plantation understory with Nuttall oak (Quercus nuttallii Palm.). In this article, we examine the growth and biomass accumulation by Nuttall oak seedlings to determine whether this species can be established and whether it will develop beneath the cottonwood overstory. After 3 years of growth beneath cottonwood canopies, Nuttall oak seedlings were similar in height (126 cm), but were 20% smaller in root‐collar diameter than seedlings established in open fields. Seedlings established in the open accumulated more than twice the biomass of seedlings growing beneath a cottonwood canopy. However, the relative distribution of accumulated biomass in seedlings did not differ in the two environments. Ten percent of total seedling biomass was maintained in leaf tissue, 42% was maintained in stem tissue, and 48% was maintained in root tissue on open‐grown seedlings and seedlings established in the understory of cottonwood plantations. Though establishment in the more shaded understory environment reduced Nuttall oak growth, seedling function was not limited enough to induce changes in plant morphology. Our results suggest that an afforestation system involving rapid establishment of forest cover with a quick‐growing plantation species, followed by understory enrichment with species of later succession, may provide an alternative method of forest restoration on bottomland hardwood sites and perhaps other sites degraded by agriculture throughout temperate regions.  相似文献   

6.
Summary Factors affecting seedling Virola surinamensis (Myristicaceae) survival and growth were investigated on Barro Colorado Island, Panama. Seedlings planted 3 months after germination were monitored in treefall gaps and understory using 2.25 ha irrigated and control plots through the first dry season. During the dry season, irrigated plants in gaps increased total leaf area significantly more than did irrigated plants in the shaded understory. Over the same dry season, control plants in gaps and in the shaded understory lost similar amounts of leaf area. Seedlings in understory were suppressed in stem height and biomass in both irrigated and control plots; these measures were greater in gaps and greatest in irrigated gaps (height). Roots were similar in length in all treatments, but greater in biomass in gaps than understory due to greater proliferation of secondary roots in control and irrigated gaps than in control and irrigated understory. This experiment demonstrates both water and light limitation during the first dry season after germination. V. surinamensis seedlings are capable of survival and modest growth of leaf area in the deep shade of the understory in moist locations; they are severely disadvantaged in shaded understory subject to drought, where most seeds fall and most seedlings establish. The broken canopy of a gap allows shoot and consequently root growth that permits seedlings to survive seasonal drought.  相似文献   

7.
Summary Kalancho? uniflora was grown in the glasshouse with and without shading. Chlorophyll content, area/FW ratio and specific leaf area were higher in leaves of shaded as compared to unshaded plants. Light saturation curves and continuous gas exchange measurements showed that the apparent quantum yield and the light-saturated photosynthetic rate were higher in shaded plants. Shaded plants had lower “mesophyll resistances” than unshaded plants, indicating that the different photosynthetic capacities reflected different contents of ribulose biphosphate carboxylase-oxygenase. Highlight treatment of plants grown in the shade resulted in a decreased photosynthetic efficiency, showing that these plants were sensitive to photoinhibition. However, dry matter production was higher in unshaded than in shaded plants. Obviously the difference in irradiance between the two growth regimes did more than offset the differences in photosynthetic efficiency. Applying additional nutrients did not alter the effects of high PFDs. The results are discussed in respect to photosynthetic performence and plant distribution in the epiphytic habitat.  相似文献   

8.
Cherry (Prunus avium L.) saplings were grown under natural sunlight (controls) or moderate shading (up to 30%, depending on the incident light intensity and the hour of the day). Reduced light intensity increased the dry mass of each of the plant components studied. Consequently, the total dry mass of shaded plants was significantly greater than that of controls at the end of the growing season. However, the diurnal trend in the level of photosynthesis (per unit of leaf area) of shaded plants was similar to the controls in August, but lower in September. As the growing season proceeded, reduced photosynthetic rates, thinner mesophyll and larger specific leaf area in the shaded plants indicated that leaf development had adapted to shaded conditions throughout the growing season. It is suggested that increased growth of shaded plants was caused by a higher initial relative growth rate and a greater whole-plant photosynthesis. Shading consistently reduced transpiration over the season, therefore improving water use efficiency of shaded leaves. Our results suggest that a moderate reduction in light intensity can be a useful method for improving growth and saving water in hot and dry environments.  相似文献   

9.
SUMMARY. Monthly changes in the biomass of Ranunculus, Berula and Callitriche were recorded on two 50-m sites on the River Lambourn at Bagnor between March 1971 and October 1973. On the unshaded site. Ranunculus was the dominant macrophyte and characteristically its biomass changed from 20–40 g dry wt m-2 in March to around 400 g dry wt m-2 at the end of the growing season. On the shaded site, where Berula was the dominant macrophyte. the biomass of Ranunculus was lower than on the unshaded site. There was no significant difference between the mean biomasses of Berula on these two sites but Callitriche had a signifieantly higher biomass on the shaded site. Estimates of the total biomass of macrophyte on each site were calculated and the biomass of macrophyte removed during cutting operations each summer was also assessed.  相似文献   

10.
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.  相似文献   

11.
* Here we investigated photosynthetic traits of evergreen species under a deciduous canopy in a temperate forest and revealed the importance of CO2 assimilation during winter for annual CO2 assimilation. * Saplings were shaded by the canopy trees from spring through to autumn, but were less shaded during the winter months. Photosynthetic rates at light saturation (Aarea) were lower during winter than during the growing season. Aarea was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus during the winter, but differed little during summer and autumn. * Estimated daily CO2 assimilation (Aday) was higher during the winter than during the growing season in Camellia, Ilex and Photinia but was higher than that during the growing season only at the beginning and end of winter in Castanopsis, Cleyera and Quercus. Aday was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus but differed little among them during the growing season. * These results reveal the importance of winter CO2 assimilation for the growth of Camellia, Ilex and Photinia. Furthermore, differences in annual CO2 assimilation among species are strongly modified by species-specific photosynthetic traits during the winter under deciduous canopy trees.  相似文献   

12.
非结构性碳水化合物(Non-structural Carbohydrates, NSCs)是植物生长代谢过程中重要的能量来源。通过在华南热带次生林进行氮磷添加试验,探究不同林层植物叶片NSCs的季节变化及其对氮磷添加的响应,取样时间为2019年1月、4月、7月和10月。结果表明:1)植物叶片NSCs存在显著的种间差异,磷(P)添加对叶片淀粉和NSCs含量具有显著影响,且物种与磷添加的交互作用显著影响叶片淀粉含量。2)黑嘴蒲桃和紫玉盘叶片NSCs含量对氮(N)添加的响应较为敏感,而白车和竹节叶片NSCs含量对P添加的响应较为敏感,氮磷同时添加(+NP)对植物叶片NSCs的增效作用最好。3)植物叶片NSCs存在显著的季节性变化,且季节与林层间的交互作用对叶片可溶性糖和NSCs含量具有显著影响。4)不同林层植物对氮磷添加的响应不同,氮磷添加使林下层植物叶片可溶性糖含量增高,林冠层降低,在干季,N添加会使林下层植物叶片淀粉含量增高,林冠层降低。P添加的影响恰好与之相反。在湿季,氮磷添加使林下层和林冠层植物叶片的淀粉含量增加。5)林冠层植物叶片NSCs含量高于林下层,且林下层植物叶片NSCs含量...  相似文献   

13.
平茬措施对柠条生理特征及土壤水分的影响   总被引:9,自引:0,他引:9  
杨永胜  卜崇峰  高国雄 《生态学报》2012,32(4):1327-1336
通过对比试验,研究了平茬措施对柠条的净光合速率、蒸腾速率、水分利用效率、枝水势,以及土壤水分含量的影响。结果表明:(1)平茬措施对柠条生理特征的影响因其生长发育阶段而异。其中,在花期(6月份),平茬柠条日平均净光合速率较对照(未平茬柠条)降低14.72%,日平均蒸腾速率提高27.31%,水分利用效率较对照低33.33%;随着柠条的生长发育(7月、8月、9月),平茬柠条日平均净光合速率逐渐升高最终高于对照,日平均蒸腾速率的差距也不断缩小;相应的其水分利用效率增加较快(对照柠条、平茬柠条增幅分别达108.3%、222.5%),至自然生长末期(9月),平茬柠条较对照高出4.76%。(2)平茬柠条枝水势的日变化和月变化均高于对照。(3)在整个生长季,平茬柠条地的平均土壤含水量在50—240 cm范围内均明显高于对照,且平茬措施显著降低了0—300 cm剖面各层土壤水分变异情况。(4)相关分析显示,平茬措施对柠条生理特征及土壤水分有重要影响。可见,采取平茬措施的第1年,平茬措施对柠条同时产生消极的生理影响和积极的土壤水分效应。弄清平茬措施的更新复壮机理,需要开展更多的深入研究工作。  相似文献   

14.
Understory light environments change rapidly following timber harvest, and while many understory species utilize and benefit from the additional light, this response is not ubiquitous in shade-obligate species. I examined the effects of patch cut timber harvest on the physiology and growth of an obligate forest understory species to determine if disturbances via timber harvest are physiological stressors or whether such disturbances provide physiological benefits and growth increases in understory species. Forest canopy structure, along with photosynthesis, respiration, water use efficiency, stomatal conductance, and growth rates of American ginseng were quantified one summer before and two summers after patch cut timber harvest. Survival following timber harvest was lower than that observed at undisturbed populations; however, growth of survivors increased post-harvesting, with growth increasing as a function of canopy openness. Light response curves as well as photosynthesis and respiration rates indicated that plants were not well acclimated to higher light levels in the growing season after timber harvest, but rather to two growing seasons after harvest. Relative growth rate formed a positive linear relationship with maximum photosynthesis following timber harvest. My study suggests that ginseng is a “slow opportunist”, because while it benefits from sudden light increases, acclimation lags at least one growing season behind canopy changes. American ginseng is surprisingly resilient in the face of a discrete environmental shift and may benefit from forest management strategies that mimic the natural disturbance regimes common in mature forests throughout its range.  相似文献   

15.
Tsitsoni  T.  Ganatsas  P.  Zagas  T.  Tsakaldimi  M. 《Plant Ecology》2004,171(1-2):165-174
This paper deals with the dynamics of postfire regeneration of Pinus brutia Ten. in an artificial forest ecosystem of North Greece, after a fire in 1982. The following issues are studied: the natural development of P. brutia stands 20 years after the fire, the current stand structure, and the influence of thinning treatment on stand population dynamics and tree growth patterns. The present work summarises and updates data taken during the years 1987–2002. The results show that the postfire regeneration was successful and contributed to the re-establishment of the pre-fire forest not only at the sites of good quality but at the medium quality sites as well. Regarding the postfire development, it is observed that an abundant P. brutia re-establishment is followed by a natural and gradual reduction of tree population caused by the influence of the physical environment during the early postfire years and caused by self-thinning later. The stands have entered the stem exclusion stage and they are growing at a narrow spacing in all cases. The evolution pattern and the stand structure were affected by thinning, which resulted in the improvement of tree quality and growth and accelerated their early fruition, thus contributing to higher ecosystem resilience.  相似文献   

16.
Broncano  Maria José  Riba  Miquel  Retana  Javier 《Plant Ecology》1998,138(1):17-26
A two-level multifactor experimental approach was used to compare seed germination and seedling performance of two Mediterranean tree species: the early successional Aleppo pine (Pinus halepensis Mill.) and the late successional holm oak (Quercus ilex L.). In a first experiment germination rate was evaluated under the combined effects of shade, nitrogen availability, and pine or holm oak leaf litter. In a second experiment we tested for the effects of shade, nutrient availability, and litter type on seedling survival, growth and biomass allocation. Holm oak showed higher germination rates under shaded than under unshaded conditions, while Aleppo pine showed no differences between shaded and unshaded conditions. Nitrogen availability and litter type had no significant effect on germination of either species. Both species showed increased RGR, but also higher mortality rates, when grown in an enriched nutrient environment. While Aleppo pine showed no differences in RGR and mortality rate under different shading levels, RGR decreased and mortality increased for holm oak in full light. Increased radiation decreased LAR, SLA and height:diameter ratio, and increased RWR and R/S in both species, although Aleppo pine showed more pronounced changes. Unlike Aleppo pine, holm oak responded to increased nutrient availability by decreasing R/S and increasing LAR. From these results, no seed-seedling conflicts were found in either species, but a trade-off does seem to exist for holm oak between biomass allocation traits deployed in response to increased nutrient availability and radiation. Aleppo pine outperformed holm oak under most environmental conditions tested and showed a wider regeneration niche.  相似文献   

17.
He Y L  Wang M T  Wen S J  Zhang Y H  Ma T  Du G Z 《农业工程》2007,27(8):3091-3097
We studied the influence of seed size on germination, seedling growth and seedling responses to light in Ligularia virgaurea, a clonal herb native to the Qinghai-Tibet Plateau. (1) Under unshaded conditions, large seeds had significantly (P < 0.001) higher rates of germination than did small seeds. Both large and small seeds showed significantly reduced levels of germination under shaded conditions. The magnitude of this effect was greater for small seeds than for large seed. (2) Seedlings from large seeds had significantly higher rates of biomass accumulation (g · day−1) than did seedlings from small seeds. The total biomass of seedlings from larger seeds is larger than that from smaller ones. And seedlings from large and small seeds also differed in biomass allocation. (3) Seedlings from small seeds have higher relative growth rates (RGR; g · g−1 · day−1) than do seedlings from large seeds under both shaded and unshaded conditions. In contrast, there was no significant difference in leaf area ratio (LAR), specific leaf area (SLA) or leaf weight ratio (LWR) between seedlings from small and large seeds. RGR, LAR, SLA and LWR were all significantly higher in seedlings grown under shaded conditions than under unshaded conditions.  相似文献   

18.

In temperate oak forests in Ohio, USA, we examined variability in forest communities within containment treatment sites for oak wilt (Bretziella fagacearum), a fungal pathogen lethal to susceptible oak species. Containment treatments included quarantine lines in soil for limiting belowground fungal spread and sanitation cutting of 1–3 mature black oak (Quercus velutina) trees within oak wilt infection patches. At 28 sites, we compared tree structure and understory plant communities across a gradient of 1- to 6-year-old treatments and reference forest (untreated and without evidence of oak wilt). While oak seedlings were abundant, oak saplings (1–10 cm in diameter) were absent. In contrast, many native understory plant community measures were highest in oak wilt treatments. Plant species richness 100 m?2 doubled in treatments, regardless of age, compared with reference forest. Plant cover increased with treatment age, with 6-year-old treatments exhibiting 5?×?more cover than reference forest. Non-native plants averaged only a small proportion (<?0.12) of cover across treatments and reference forest. Variability in understory communities was mostly predictable using treatment age, tree canopy cover, and geographic location, as 20 of 25 understory measures had at least 72% of their variance modeled. While oak wilt treatments did not facilitate oak regeneration nor many conservation-priority species of open savanna-woodland habitats, the treatments did diversify and increase cover of native understory communities with minimal invasion of non-native plants.

  相似文献   

19.
Lack of tree regeneration and persistency of species-poor shrublands represent a growing problem across Mediterranean evergreen oak forests. What constrains forest regeneration is poorly understood, and restoration attempts have been largely unsuccessful. We assessed the contribution of four different mechanisms of tree recruitment limitation (that is, source, dispersal, germination, and establishment) in a cork oak (Quercus suber) system in southern Portugal. Using a combination of field studies and experiments, we quantified seed production, seed removal and dispersal, seed survival and germination, seedling establishment and survival, as well as cork oak natural regeneration for the three dominant vegetation types in this system (Cistus ladanifer shrubland, oak forest, and oak savanna). We found that all four forms of cork oak recruitment limitation were significantly more severe in shrublands than in oak forests and savannas, so that oak seedling recruitment in shrubland was impeded in multiple ways. Our results explain why transitions from shrublands to oak savannas and forests are extremely difficult, and that the release from arrested succession in this system requires the simultaneous relief of multiple constraints on recruitment limitation in the early life history of oaks. These results have important implications for the restoration and conservation of Mediterranean oak systems.  相似文献   

20.
 We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1–80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability. Received: 4 January 1997 / Accepted: 28 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号