首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this study, the enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation in the chrysene-degrading organism Sphingomonas sp. strain CHY-1 were investigated. [14C]chrysene mineralization experiments showed that PAH-grown bacteria produced high levels of chrysene-catabolic activity. One PAH-induced protein displayed similarity with a ring-hydroxylating dioxygenase beta subunit, and a second PAH-induced protein displayed similarity with an extradiol dioxygenase. The genes encoding these proteins were cloned, and sequence analysis revealed two distinct loci containing clustered catabolic genes with strong similarities to corresponding genes found in Novosphingobium aromaticivorans F199. In the first locus, two genes potentially encoding a terminal dioxygenase component, designated PhnI, were followed by a gene coding for an aryl alcohol dehydrogenase (phnB). The second locus contained five genes encoding an extradiol dioxygenase (phnC), a ferredoxin (phnA3), another oxygenase component (PhnII), and an isomerase (phnD). PhnI was found to be capable of converting several PAHs, including chrysene, to the corresponding dihydrodiols. The activity of PhnI was greatly enhanced upon coexpression of genes encoding a ferredoxin (phnA3) and a reductase (phnA4). Disruption of the phnA1a gene encoding the PhnI alpha subunit resulted in a mutant strain that had lost the ability to grow on PAHs. The recombinant PhnII enzyme overproduced in Escherichia coli functioned as a salicylate 1-hydroxylase. PhnII also used methylsalicylates and anthranilate as substrates. Our results indicated that a single enzyme (PhnI) was responsible for the initial attack of a range of PAHs, including chrysene, in strain CHY-1. Furthermore, the conversion of salicylate to catechol was catalyzed by a three-component oxygenase unrelated to known salicylate hydroxylases.  相似文献   

3.
4.
5.
Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.  相似文献   

6.
The majority of individuals in the chronic phase of Chagas disease are asymptomatic (indeterminate form, IF). Each year, ∼3% of them develop lesions in the heart or gastrointestinal tract. Cardiomyopathy (CCHD) is the most severe manifestation of Chagas disease. The factors that determine the outcome of the infection are unknown, but certainly depend on complex interactions amongst the genetic make-up of the parasite, the host immunogenetic background and environment. In a previous study we verified that the maxicircle gene NADH dehydrogenase (mitochondrial complex I) subunit 7 (ND7) from IF isolates had a 455 bp deletion compared with the wild type (WT) ND7 gene from CCHD strains. We proposed that ND7 could constitute a valuable target for PCR assays in the differential diagnosis of the infective strain. In the present study we evaluated this hypothesis by examination of ND7 structure in parasites from 75 patients with defined pathologies, from Southeast Brazil. We also analysed the structure of additional mitochondrial genes (ND4/CR4, COIII and COII) since the maxicircle is used for clustering Trypanosoma cruzi strains into three clades/haplogroups. We conclude that maxicircle genes do not discriminate parasite populations which induce IF or CCHD forms. Interestingly, the great majority of the analysed isolates belong to T. cruzi II (discrete typing unit, (DTU) IIb) genotype. This scenario is at variance with the prevalence of hybrid (DTU IId) human isolates in Bolivia, Chile and Argentina. The distribution of WT and deleted ND7 and ND4 genes in T. cruzi strains suggests that mutations in the two genes occurred in different ancestrals in the T. cruzi II cluster, allowing the identification of at least three mitochondrial sub-lineages within this group. The observation that T. cruzi strains accumulate mutations in several genes coding for complex I subunits favours the hypothesis that complex I may have a limited activity in this parasite.  相似文献   

7.
We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gmr fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30°C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7°C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15°C was approximately five times less than the level in LB400-1 grown at 30°C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.  相似文献   

8.
Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5′ to the 3′ direction, were a dehydrogenase, the dioxygenase small (β)-subunit, and the dioxygenase large (α)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large α subunit did not cluster with most of the known α-subunit sequences but rather with three newly described α subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits.  相似文献   

9.
Complete nucleotide sequence of mitochondrial genome (mitogenome) of the Catla catla (Ostariophysi: Cypriniformes: Cyprinidae) was determined in the present study. Its length is 16,594 bp and contains 13 protein coding genes, 22 transfer RNAs, two ribosomal RNAs and one non-coding control region. Most of the genes were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser (UCN), Glu and Pro) genes were encoded on the L-strand. The reading frames of two pair of genes overlapped: ATPase 8 with 6 and ND4L with ND4 by seven nucleotides each. The main non-coding region was 929 bp, with three conserved sequence blocks (CSB-I, CSB-II, and CSB-III) and an unusual simple sequence repeat, (TA)7. Phylogenetic analyses based on complete mitochondrial genome sequences were in favor of the traditional taxonomy of family Cyprinidae. In conclusion present mitogenome of Catla catla adds more information to our understanding of diversity and evolution of mitogenome in fishes.  相似文献   

10.
Two mitochondrial DNA molecules which represent major Ovis aries mtDNA haplogroups were cloned and comparatively sequenced to assess the degree of intraspecific variation. A total of 9623 bp that correspond to 58% of both mitochondrial genomes were determined. The control region, the Cyt b , ND2, ND3, ND4L, COIII and 12 tRNA genes, including the origin of L-strand replication, were completely characterized. Partial sequence information was obtained from the 12S and 16S rRNA and an additional six protein coding and six tRNA genes. The control regions of the two mtDNAs showed a nucleotide divergence of 4·34% while coding regions differed by 0·44%. The number of sheep coding region substitutions was similar to values observed in intraspecific comparisons of mitochondrial DNAs that represent remote points in genealogical trees of mice and humans. However, replacement substitutions were only observed at ∼30% of the rate in mice and ∼20% of the rate in humans. Nucleotide substitutions with a potential for phenotypic effects were found in the 12S and 16S rRNA and in the ND1 and COIII genes.  相似文献   

11.
赤麂线粒体全基因组的序列和结构   总被引:4,自引:0,他引:4  
提取赤麂细胞株总DNA,参照我们实验室已测定的同属动物小麂线粒体全基因组序列设计引物,PCR扩增、测序、拼接,获得赤麂线粒体全基因组序列并进行生物信息学分析。赤麂线粒体全基因组序列全长16354bp。定位了22个tRNA基因、2个rRNA基因、13个蛋白编码基因和1个D-loop区。赤麂与小麂及其它哺乳动物线粒体的基因组结构相同,它们的序列同源性都较高。  相似文献   

12.
The bopXYZ genes from the gram-positive bacterium Rhodococcus sp. strain 19070 encode a broad-substrate-specific benzoate dioxygenase. Expression of the BopXY terminal oxygenase enabled Escherichia coli to convert benzoate or anthranilate (2-aminobenzoate) to a nonaromatic cis-diol or catechol, respectively. This expression system also rapidly transformed m-toluate (3-methylbenzoate) to an unidentified product. In contrast, 2-chlorobenzoate was not a good substrate. The BopXYZ dioxygenase was homologous to the chromosomally encoded benzoate dioxygenase (BenABC) and the plasmid-encoded toluate dioxygenase (XylXYZ) of gram-negative acinetobacters and pseudomonads. Pulsed-field gel electrophoresis failed to identify any plasmid in Rhodococcus sp. strain 19070. Catechol 1,2- and 2,3-dioxygenase activity indicated that strain 19070 possesses both meta- and ortho-cleavage degradative pathways, which are associated in pseudomonads with the xyl and ben genes, respectively. Open reading frames downstream of bopXYZ, designated bopL and bopK, resembled genes encoding cis-diol dehydrogenases and benzoate transporters, respectively. The bop genes were in the same order as the chromosomal ben genes of P. putida PRS2000. The deduced sequences of BopXY were 50 to 60% identical to the corresponding proteins of benzoate and toluate dioxygenases. The reductase components of these latter dioxygenases, BenC and XylZ, are 201 residues shorter than the deduced BopZ sequence. As predicted from the sequence, expression of BopZ in E. coli yielded an approximately 60-kDa protein whose presence corresponded to increased cytochrome c reductase activity. While the N-terminal region of BopZ was approximately 50% identical in sequence to the entire BenC or XylZ reductases, the C terminus was unlike other known protein sequences.  相似文献   

13.
In this study, the enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation in the chrysene-degrading organism Sphingomonas sp. strain CHY-1 were investigated. [14C]chrysene mineralization experiments showed that PAH-grown bacteria produced high levels of chrysene-catabolic activity. One PAH-induced protein displayed similarity with a ring-hydroxylating dioxygenase beta subunit, and a second PAH-induced protein displayed similarity with an extradiol dioxygenase. The genes encoding these proteins were cloned, and sequence analysis revealed two distinct loci containing clustered catabolic genes with strong similarities to corresponding genes found in Novosphingobium aromaticivorans F199. In the first locus, two genes potentially encoding a terminal dioxygenase component, designated PhnI, were followed by a gene coding for an aryl alcohol dehydrogenase (phnB). The second locus contained five genes encoding an extradiol dioxygenase (phnC), a ferredoxin (phnA3), another oxygenase component (PhnII), and an isomerase (phnD). PhnI was found to be capable of converting several PAHs, including chrysene, to the corresponding dihydrodiols. The activity of PhnI was greatly enhanced upon coexpression of genes encoding a ferredoxin (phnA3) and a reductase (phnA4). Disruption of the phnA1a gene encoding the PhnI alpha subunit resulted in a mutant strain that had lost the ability to grow on PAHs. The recombinant PhnII enzyme overproduced in Escherichia coli functioned as a salicylate 1-hydroxylase. PhnII also used methylsalicylates and anthranilate as substrates. Our results indicated that a single enzyme (PhnI) was responsible for the initial attack of a range of PAHs, including chrysene, in strain CHY-1. Furthermore, the conversion of salicylate to catechol was catalyzed by a three-component oxygenase unrelated to known salicylate hydroxylases.  相似文献   

14.
A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5T isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30–35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.  相似文献   

15.
16.
We report the electron transfer properties of the NADH:ubiquinone oxidoreductase complex of the respiratory chain (Complex I) in mitochondria of cells derived from LHON patients with two different mutations in mitochondrial DNA (mtDNA). The mutations occur in the mtDNA genes coding for the ND1 and ND4 subunits of Complex I. The ND1/3460 mutation exhibits 80% reduction in rotenone-sensitive and ubiquinone-dependent electron transfer activity, whereas the proximal NADH dehydrogenase activity of the Complex is unaffected. This is in accordance with the proposal that the ND1 subunit interacts with rotenone and ubiquinone. In contrast, the ND4/11778 mutation had no effect on electron transfer activity of the Complex in inner mitochondrial membrane preparations; also Km for NADH and NADH dehydrogenase activity were unaffected. However, in isolated mitochondria with the ND4 mutation, the rate of oxidation of NAD-linked substrates, but not of succinate, was significantly decreased. This suggests that the ND4 subunit might be involved in specific aggregation of NADH-dependent dehydrogenases and Complex I, which may result in fast ('solid state') electron transfer from the former to the latter.  相似文献   

17.
Genetic resistance to Colorado potato beetle (Leptinotarsa decemlineata [Say]) from Solanum chacoense has been incorporated in the tetraploid potato selection, ND4382-19, which is highly resistant and contains moderate level of foliar leptines. We recently reported using ND4382-19 progeny, population ND5873 (ND4382-19 × Chipeta), to map two genes that segregated as complementary epistatic genes that allow accumulation of leptinidine (Lep) and acetyl-leptinidine (AL) on chromosomes 2 and 8, respectively. We describe here the characterization of a second half-sib population NDG116 (ND4382-19 × N142-72). In this population, solasodine from parent N142-72, which has Solanum berthaultii in its background, was predominant over solanidine-based alkaloids. Concentrations of solanidine, leptinidine, and acetyl-leptinidine were 15-, 5-, and 14-fold lower than in the ND5873 population. Nevertheless, Lep and AL mapped to the same locations on chromosomes 2 and 8 of parent ND4382-19, respectively. The two populations were evaluated for resistance to Leptinotarsa in field assays, and by detached leaf assay for population NDG116. In both families, QTL analysis identified a major QTL from ND4382-19 on the distal end of chromosome 2, close to the Lep locus. The contribution of this QTL to resistance ranged from 11 to 34% for ND5873 at four field sites. Contribution to resistance from the linkage group that contains the gene AL for the accumulation of leptine was not detected. In family NDG116, the same chromosome 2 QTL was detected for field and detached leaf assays, explaining 26 and 12% of the variance for defoliation and larval development, respectively. These data may indicate another resistance mechanism besides leptine in the Leptinotarsa resistance observed in these populations.  相似文献   

18.
The direct physiological effects that promote nicotine dependence (ND) are mediated by nicotinic acetylcholine receptors (nAChRs). In line with the genetic and pharmacological basis of addiction, many previous studies have revealed significant associations between variants in the nAChR subunit genes and various measures of ND in different ethnic samples. In this study, we first examined the association of variants in nAChR subunits α2 (CHRNA2) and α6 (CHRNA6) genes on chromosome 8 with ND using a family sample consisting of 1,730 European Americans (EAs) from 495 families and 1,892 African Americans (AAs) from 424 families (defined as the discovery family sample). ND was assessed by two standard quantitative measures: smoking quantity (SQ) and the Fagerström Test for ND (FTND). We found nominal associations for all seven tested SNPs of the genes with at least one ND measure in the EA sample and for two SNPs in CHRNA2 in the AA sample. Of these, associations of SNPs rs3735757 with FTND (P = 0.0068) and rs2472553 with both ND measures (with a P value of 0.0043 and 0.00086 for SQ and FTND, respectively) continued to be significant in the EA sample even after correction for multiple tests. Further, we found several haplotypes that were significantly associated with ND in the EA sample in CHRNA6 and in the both EA and AA samples in CHRNA2. To confirm the associations of the two genes with ND, we conducted a replication study with an independent case–control sample from the SAGE study, which showed a significant association of the two genes with ND, although the significantly associated SNPs were not always the same in the two samples. Together, these findings indicate that both CHRNA2 and CHRNA6 play a significant role in the etiology of ND in AA and EA smokers. Further replication in additional independent samples is warranted.  相似文献   

19.
20.
Mitochondrial genome has been used to shed light on many fields of both basic and applied research, including the study of molecular evolution. The complete mitochondrial genome sequence of 17368 bp nucleotides from the Pleuronichthys lighti was determined. It was a circular double-stranded DNA molecule with identical set of 22 transfer RNA genes, 2 ribosomal RNA genes, 13 protein-coding genes as well as a non-coding control region. Stand asymmetry in the nucleotide composition was reflected in the codon usage of genes oriented in opposite directions. In the control region, we identified the extended termination associated sequence domain, the central conserved sequence block domain and the conserved sequence block domain, and two complete repeat region. They were “TTACAATA” and “TGTTGTAA”, respectively. All known 12 mitochondrial genomes of Pleuronectinae fishes were downloaded and analyzed; there were 5570 variable sites in the consensus sequences of 15241 base pairs, calculation of total sites were 35.5%. The highest sequence divergence was 50% (ATP8) and the Kimura-2-parameter genetic distance was 0.235 (ND6), whereas the COIII had the lowest sequence divergence (28.8%) and genetic distance (0.128); the protein coding genes were mainly acted by purifying selection which was detected by selection tests. Analysis of confidence and the information content for per nucleotide revealed ND5, ATP6, COI and ND4 genes were suitable molecular markers for phylogenetic study of Pleuronectinae fishes. Phylogenetic analysis using Bayesian computational algorithms based on COI genes provided support for the taxonomic status of P. lighti, which was consistent with the traditional taxonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号