首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mean duration of oestrus, ovulation rate, duration of the preovulatory LH discharge, time interval between sponge removal and beginning of the LH discharge, total LH discharged, maximum LH value observed and the concentration of progesterone in the peripheral plasma during the luteal phase of the oestrous cycle was similar in Galway adult ewes and 8-month-old ewe lambs after treatment with intravaginal sponges containing 30 mg cronolone for 12 days and injection of 500 i.u. PMSG. The interval between sponge removal and the onset of oestrus was shorter for adults than for ewe lambs; the interval between the onset of oestrus and the beginning of the LH discharge was longer in adults. During the period 12-36 h after sponge removal the mean plasma total oestrogen concentration was significantly higher in lambs than in adults. In a separate study of the time of ovulation in Galway ewe lambs given the same progestagen-PMSG treatment, ovulation did not occur in any lamb before 17 h after the onset of oestrus and the majority ovulated close to the end of oestrus.  相似文献   

2.
The oestrous and LH responses by ovariectomized adult ewes (N=23) and 8-month-old ewe lambs (N=24) to i.m. injection of 10, 25, 62.5 or 156.25 μg oestradiol benzoate (ODB) were compared. The animals were primed by six daily injections of progesterone and ODB was administered 48 h after the last progesterone injection. The interval between ODB injection and onset of oestrus declined linearly (P<0.01) as the dose of ODB increased and was similar for the two age groups. The mean (±SEM) intervals to oestrus for levels of 10, 25, 62.5 and 156.25 μg ODB were 22.9±1.90, 18.0±1.33, 14.5±1.26 and 13.5±1.32 h, respectively. The duration of oestrus, determined by checking with Finnish Landrace rams at 3-h intervals, increased linearly (P<0.01) as the dose of ODB was raised and was significantly longer for ewe lambs (63.1±2.95 h) than for adult ewes (50.4±3.52 h). The overall mean (±SEM) durations of oestrus for levels of 10,25, 62.5 and 156.25 μg ODB were 16.9±5.91, 37.0±4.13, 75.2±3.94 and 97.8±4.13 h, respectively. A “pre-ovulatory” -type LH surge was observed in 32 of the 47 animals studied. The interval between injection of ODB and the beginning of the LH release declined as the dose of ODB increased (P<0.01) and was shorter (P<0.01) for ewe lambs (19.8±0.74 h) than for adult ewes (23.2±0.90 h). There was no evidence for an effect of either ewe age or dose of ODB on the maximum LH concentration observed, duration of LH discharge or total quantity of LH released. The sensitivity of the two age groups to the negative feedback effects of ODB on LH secretion was similar.  相似文献   

3.
Pre- and post-pubertal progesterone profiles and ovarian activity of 24 Javanese thin-tail ewe lambs were studied under research-station conditions. The results showed that immaturity of ovarian function before the animals reached puberty was characterized by the occurrence of ovulation without oestrus (66.7%), oestrus without ovulation (12.5%) and failure in some ewe lambs to maintain regular ovarian activity following their first ovulation. A high proportion (39.5%) of corpora lutea was not fully functional. Some pronounced increases in plasma-progesterone concentration were observed before first ovulation, while an ovulation observed by laparoscopy was not always followed by a marked increase in plasma-progesterone concentration. Once the animals reached puberty, the levels and the patterns of change in plasma-progesterone concentration during a cycle or in early pregnancy were similar to those commonly observed in temperate breeds.  相似文献   

4.
In three experiments, the onset of oestrus, time of ovulation and lambing after intrauterine insemination with frozen-thawed semen were examined following synchronisation of oestrus using intravaginal progestagen-impregnated sponges (inserted for 12 days) and an injection of PMSG at sponge removal.

The number (and percentage) of ewes detected in oestrus 12, 24, 36, 48, 60 and 72 h after sponge removal was 1 (0.3), 2 (0.6), 17 (5.2), 120 (36.7), 65 (20.0) and 10 (3.1) respectively. One hundred and twelve ewes (34.3%) remained unmarked. Egg fertilisation rates were not different between ewes irrespective of time of onset of oestrus or whether or not ewes were marked.

The median time of ovulation with respect to sponge removal (with 95% fiducial limits) for ewes joined with vasectomised rams (10:1) at spronge removal (teased ewes) was 55.8 h (54.61–57.09) and for unteased ewes 59.7 h (58.27–61.12).

In the third experiment, a total of 394 ewes were inseminated by laparoscopy with frozen-thawed semen. The percentage of ewes lambing and lambs born per ewe inseminated, and number of lambs born per ewe lambing for inseminations 48, 60, 72 and 78 h after sponge removal were 45.9, 57.7 and 1.25; 55.1, 72.0 and 1.31; 57.4, 80.9 and 1.41; and 39.3, 60.7 and 1.54, and for 59 control ewes receiving fresh semen by cervical insemination 47.5, 69.5 and 1.46 respectively. The lambing data after insemination with frozen semen was not different to that of the controls. The percentage of ewes lambing and lambs born per ewe inseminated increased with time of insemination at 48, 60 and 72 h (linear, P < 0.01) but was lower for inseminations at 78 h after sponge removal. Number of lambs born per ewe lambing increased with time of insemination after sponge removal (linear, P < 0.05).  相似文献   


5.
This contribution to the Symposium concerns four topics which have been addressed in our laboratory over the past five years. First, the responses to a controlled light environment of Merino ewes and rams have been compared with those of two British breeds. The endocrinological patterns were similar in all breeds but cyclic ovarian activity and ram libido were different. While showing a degree of entrainment to photoperiod, the breeding patterns were much less rigidly controlled in the Merinos than in the others. Second, the effectiveness of establishment of a cervical reservoir of spermatozoa, in ewes in which oestrus and ovulation have been controlled, has been re-examined. This is highly dependent on the time of insemination relative to that of the release of LH. Maximum numbers are found when ewes are inseminated shortly after the LH peak, i.e. some 6-10 h after the onset of oestrus. Third, the quantitative and temporal endocrinological and behavioural events following standard, progestagen-PMSG treatment have been quantified. Contrary to earlier expressed beliefs, these events are remarkably predictable provided an intensive system of mating or detection of oestrus is used. The onset of oestrus in treated anoestrous crossbred ewes has a normal distribution, with a range of 24 h, centred around a mean of 33 h after withdrawal of a 30 mg Cronolone intravaginal sponge and injection of 500 i.u. PMSG. This period of time is dose-dependent. The LH peak occurs 4.5 +/- 0.7 h later and the times of onset of oestrus and of LH release are highly correlated (r = 0.93). Ovulation is some 24 h later again. Fourth, differences in the response of ewes to different batches of PMSG have been defined. While the three commercial preparations studied regularly induced ovulation in anoestrous ewes at doses of 250 i.u. and above, the quantitative responses varied greatly. One preparation would not induce multiple ovulation, even at high doses. There are differences in steroidogenesis and in pregnancy rates, associated with dose of PMSG and the consequent ovulation rate: the ideal would be for every ewe to shed two or three ova. A higher ovulation rate is acceptable, as early embryonic mortality generally reduces the litter size. This is particularly important in deep anoestrus. However, this does not solve the problem of breeding in early lactation.  相似文献   

6.
The objective of this work was to study the effect of the endogenous opiate peptide (EOP) antagonist, naloxone, on the preovulatory LH surge and on the time of onset and duration of oestrus in the ewe with induced oestrus during the non-breeding season. Forty Suffolk X Hampshire ewes 2-3-years-old and 50+/- 4kg were studied, ewes were divided at random in two groups of 20, housed in open paddocks under natural photoperiod (19 degrees latitude N); were fed with hay and commercial pellets, and provided water ad libitum. Group one received an intravaginal sponge with 45mg of medroxiprogesterone acetate for 14 days, and upon sponge withdrawal 250IU of eCG was administered i.m. Group two received the same treatment as group 1 but in addition they received two i.m. injections of 0.5mg of naloxone, one given on sponge withdrawal and the second 24h later (total dose 1.0mg). Oestrus in naloxone-treated ewes was present 32+/- 2h and in control ewes in 35+/- 3h after sponge withdrawal. Duration of oestrus in control ewes was shorter (27+/- 2.5h), than naloxone-treated ewes (39+/- 6h); (P<0.0001). The LH surge in naloxone-treated ewes was initiated 5h after onset of oestrus, and 8h after onset of oestrus in control ewes, and the difference was significative (P<0.0006). It was concluded that EOP are important modulators of reproductive function in the ewe.  相似文献   

7.
The objectives of this study were to determine the effect of GnRH analogue (buserelin) or human chorionic gonadotrophin (hCG, Chorulon) treatment on Day 12 of pregnancy on ovarian function, plasma hormone concentrations, conceptus growth and placentation in ewes and ewe lambs. After oestrus synchronization with progestagen sponges and eCG, all the animals were mated with fertile rams. Both ewes and ewe lambs (20 per treatment group) were given either normal saline or 4 microg GnRH or 200 IU hCG on Day 12 post-mating. Pre- and post-treatment plasma hormone concentrations were determined in seven pregnant animals per treatment group in samples collected 1h before and 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment. Overall mean progesterone concentrations were higher (P<0.001) in ewes as compared with ewe lambs in saline-treated controls. GnRH or hCG treatment increased (P<0.001) mean plasma progesterone concentrations in both age groups, however, post-treatment concentrations were significantly (P<0.05) higher in ewes than in ewe lambs. Oestradiol concentrations were similar in the two control groups. In ewes, but not in ewe lambs, both GnRH and hCG treatments significantly (P<0.05) increased the mean oestradiol concentrations above pre-treatment levels. Moreover, post-treatment oestradiol concentrations in GnRH- and hCG-treated animals were significantly (P<0.05) higher than those in the saline-treated controls. LH release in response to GnRH treatment was greater (P<0.05) in ewes than in ewe lambs, whereas FSH release in ewes was less (P<0.05) than that of ewe lambs. The effects of GnRH or hCG on conceptus growth and placentation was determined at slaughter on Day 25. In ewes, GnRH treatment increased (P<0.05) luteal weight, amniotic sac width and length, and crown-rump length compared with controls, but had no effect on these parameters in ewe lambs. In ewes, hCG treatment also enhanced (P<0.05) luteal weight, amniotic sac width and length, crown-rump length, embryo weight and number of placentomes as compared with controls. In ewe lambs, there was no difference (P<0.05) between hCG and control groups in luteal weight, embryo weight and amniotic sac width but crown-rump length, amniotic sac length and the number of placentomes forming the placenta were greater (P<0.05). In conclusion, GnRH or hCG treatment on Day 12 of pregnancy can increase ovarian function, conceptus growth and placental attachment in ewes. However, these treatments were less effective in ewe lambs.  相似文献   

8.
Two experiments were conducted to examine the effects of ram exposure during the breeding season, in combination with progestagen treatment on estrus synchronization, fertility the LH surge and ovulation in ewes. Experiment 1 was subdivided into experiments 1a and 1b. In all experiments cross-bred ewes were treated with an intravaginal sponge for 12-14 days and three days before sponge withdrawal ewes were divided into control (no further treatment; n=191, 103 and 50 for experiments 1a, 1b and 2, respectively) or ram exposed (three mature rams per 50 ewes were introduced; +Ram; n=187, 99 and 49 for experiments 1a, 1b and 2, respectively). At sponge withdrawal ewes in Experiments 1a and 2 received 500 IU eCG and rams were removed from all the +Ram groups. In Experiments 1a and 1b, raddled, entire rams were introduced to ewes 48 h after sponge withdrawal. The timing of mating was recorded and ewes were maintained until lambing. In Experiment 2, estrus behavior was determined every 4 h and the time of the LH surge and ovulation were determined from a subset of 10 ewes per group. In Experiment 1a, less +Ram ewes were bred by 48 h after ram introduction (control 98% versus +Ram 89%, P<0.001) and in Experiments 1a and 1b 14% fewer (P<0.05) of the ewes bred in the first 3 h after ram introduction lambed to that service. In Experiment 1a, ram exposed ewes had a lower litter size than control ewes (1.93+/-0.06 versus 1.70+/-0.06 lambs per ewe; P<0.05). In Experiment 2, rams advanced (P<0.05) estrus, the LH surge and ovulation by 2-6 h compared with control ewes. We speculate that exposure of ewes to rams increased LH secretion and that this in turn increased follicle development and the production of oestradiol that led to a more rapid onset of estrus, the LH surge and ovulation compared to control ewes. Unexpectedly, ewes that were bred had lower fertility in the +Ram groups than control groups.  相似文献   

9.
Suprabasal progesterone concentrations around oestrus have induced disturbances in oestrous behaviour and ovulation. To determine whether fertility in such an altered oestrus can be maintained at normal levels with additional inseminations (AI) until ovulation, fertility was compared in heifers (n = 11) inseminated in normal oestrous cycles and thereafter in cycles in which the animals were treated with progesterone in order to create suprabasal concentrations after luteolysis. The treatment consisted of silicone implants containing 10.6 mg kg−1 of progesterone inserted subcutaneously on Day 8 of the oestrous cycle (day of ovulation designated Day 0) and removed on Day 25. Both in control oestrous cycles and oestrous cycles under progesterone treatment, growth of the ovulatory follicle and ovulation were determined by frequent ultrasound scanning. Blood was collected frequently for further analysis of progesterone, oestradiol-17β and luteinising hormone (LH). Insemination was performed 12 h after onset of standing oestrus. if ovulation did not occur 24 h after AI, heifers were inseminated again until ovulation. Pregnancy was diagnosed by ultrasound 25 days after ovulation.In control oestrous cycles, plasma progesterone decreased to 0.3 ± 0.3 nmol 1−1. Duration of oestrus was 22.9 ± 2.0 h, the interval from onset of oestrus to ovulation was 32.4 ± 2.3 h and the interval from LH peak to ovulation was 28.6 ± 1.4 h. The interovulatory interval was 20.7 ± 0.6 days. In oestrous cycles in treated heifers, progesterone decreased to 1.0 ± 0.3 nmol l−1 (P > 0.10) and the interovulatory interval was prolonged to 23.5 ± 1.0 days (P < 0.05). Standing oestrus lasted 47.2 ± 12.0 h (P = 0.09, n = 7). The interval from the onset of oestrus to ovulation was 59.4 ± 13.0 h (P = 0.08) and the interval from LH peak to ovulation 25.8 ± 1.3 h (P > 0.10). The prolonged oestrus was associated with increased (P < 0.05) growth of the ovulatory follicle and higher (P < 0.05) release of oestradiol-17β. Conception rates were 90% and 46% (P < 0.05), and the numbers of AI per heifer were 1.1 ± 0.1 and 3.4 ± 0.6 (P < 0.01) for control oestrous cycles and after treatment, respectively.The induction of suprabasal concentrations of progesterone caused asynchronies similar to those observed in cases of repeat breeding. The repeated AI did not maintain fertility at normal levels. It is suggested that the extended growth of the ovulatory follicle may cause impaired oocyte maturation or it may alter the maternal milieu owing to the prolonged release of oestradiol.  相似文献   

10.
The objectives of this study were to determine the effects of buserelin or saline treatment on ovarian function (Experiment 1), plasma PGFM concentrations and oxytocin stimulated prostaglandin F(2alpha) (PGF(2alpha)) release (Experiment 2) in ewe lambs and ewes. Welsh Halfbred ewes (n=26) and ewe lambs (n=24) were mated to vasectomised rams at synchronised oestrus and on Day 12 post-mating each animal was injected intramuscularly either normal saline or 4 microg buserelin. In Experiment 1, plasma progesterone and oestradiol concentrations were determined in samples collected by jugular venepuncture 1h before and at 0, 2, 4, 6, 8, 24, 48 and 72 h after treatment (n=7 per treatment group). Progesterone concentrations increased (P<0.05) from 2 to 8h after buserelin treatment and returned to basal levels after 72 h, whereas oestradiol concentrations were maximal at 2h post-treatment and returned to basal levels after 24h (P<0.05). Oestradiol concentrations were lower (P<0.05) in buserelin-treated animals than controls at 72 h post-treatment. Basal and post-treatment progesterone concentrations were greater (P<0.05) in ewes than in ewe lambs but oestradiol levels were similar for both age groups. Ovulation rate, determined by laparoscopy on Day 14, was similar for both age groups (ewes 1.1; ewe lambs 1.0). Buserelin treatment induced accessory corpora lutea in ewes (4/7; 57%) but not in ewe lambs (0/7; 0%). In the Experiment 2, plasma PGFM concentrations were determined in samples collected at 20-min intervals for 6h on Day 14 and at 20-min intervals for 1h before and at 10-min intervals for 1h and then at 20-min intervals for a further 3h period after an intravenous injection of oxytocin (1IU/kg body weight) on Day 15 post-oestrus. In this experiment there were five ewe lambs and six ewes per treatment group. There was no effect of buserelin treatment or age on basal PGFM concentrations on either Day 14 or 15. Although peak PGFM concentrations tended to be lower in buserelin-treated animals, the difference was not significant (P>0.05). However, peak duration following oxytocin challenge on Day 15 post-mating was shorter (P<0.05) in control ewes compared with control ewe lambs. In conclusion, buserelin treatment given on Day 12 post-oestrus enhances luteal function more in ewes than ewe lambs and after a transitory increase, reduces oestradiol concentrations in both ewes and ewe lambs. However, buserelin treatment does not significantly attenuate the luteolytic signal.  相似文献   

11.
The cause of fertility differences between ewe lambs and adult ewes following natural oestrus were studied in Romneys. Insemination was determined by anterior vaginal swabbing. Fertilized ewe-lamb ova were returned to donor animals along with one matched fertilized adult ewe ovum and lambings were recorded. Ewe-lamb ova were less likely (P<0.01) to survive to term compared with adult ewe ova. Insemination failure, fertilization failure and anovular oestrus were minor sources of reproductive wastage.It is concluded that reduced ovum quality appears to be the major cause of the lower fertility in naturally ovulating ewe lambs compared with adult ewes.  相似文献   

12.
The duration of oestrus and the time interval from removal of progestagen-impregnated pessaries to the onset and end of oestrus were examined in Texel, Finnish Landrace, Galway and Fingalway (Finnish Landrace X Galway) ewes. The differences among the breeds in the relationship between these variables and ovulation rate at the controlled oestrus were also investigated. Breed differences were significant for all traits except the interval from pessary withdrawal to the onset of oestrus. The relationship between ovulation rate and both the interval from pessary withdrawal to the onset of oestrus and the duration of oestrus differed significantly among the breeds. The repeatability of the duration of oestrus was significant for Texel and Rambouillet ewes (mean = 0.5) and for pooled data from ewe lambs of various breeds. It was concluded that, in view of the breed differences in the relationship between ovulation rate and duration of oestrus and other traits, generalizations should not be made from among-breed to within-breed relationships. The high repeatability for the duration of oestrus may mean substantial heritabilities for the physiological determinants of oestrus duration.  相似文献   

13.
Active immunization of prepuberal lambs with a partially purified inhibin preparation, isolated from bovine follicular fluid, increased the ovulation rate. In ewe lambs of a low fecundity breed (Suffolk x Galway), the ovulation rate rose from 1.15 to 1.95 (P<0.05) compared with that of the controls. An ovulation rate of 3.38 was recorded for immunized ewe lambs of a high fecundity breed (Finn x Dorset Horn), while the rate for mature ewes from the same flock was 2.29. Immunization did not affect the time of onset of puberty or estrous cycle length. Following immunization, antibodies were produced that bound to a pure preparation of 68kDa bovine inhibin. This report demonstrates the production of antibody to a 68kDa preparation of inhibin following active immunization of sheep using a partially purified preparation. It was concluded that the increased ovulation rate was due to the production of antibodies to inhibin, which may have reduced its negative feedback effect of FSH secretion.  相似文献   

14.
The effects of active immunization against progesterone on reproductive activity were studied in Merino ewes. Immunization against progesterone caused a shortening (P less than 0.01) of the interval between ovulations from 17-18 days (controls) to between 6 and 10 days (immunized group); this was associated with a corresponding reduction in the interval between LH surges. The immunized ewes also had higher (P less than 0.05) ovulation rates (1.72) than controls (1.25) and exhibited a reduced (P less than 0.01) incidence of oestrus (26% v. 95%). Many immunized ewes continued to ovulate despite the persistence of corpora lutea from earlier ovulations which led to an accumulation on the ovaries of many corpora lutea of different ages. The frequency of LH pulses in ewes immunized against progesterone (1.8 +/- 0.2 pulses/4 h) was significantly (P less than 0.001) higher than that of control ewes (0.3 +/- 0.1 pulses/4 h). This study highlights the importance of progesterone in the control of oestrus, ovulation, ovulation rate, luteal regression and the secretion of LH in the ewe.  相似文献   

15.
Spring-born crossbred ewe lambs were raised in a natural photoperiod and saline (N = 6) or naloxone (1 mg/kg) in saline (N = 6) was injected (i.m.) every 2 h for 6 h at 5, 10 and 15 weeks of age and for 8 h at 20, 25 and 30 weeks of age. Blood samples were taken every 12 min during treatment periods. Naloxone had no effect on time to first oestrus (controls 235 +/- 6 days, naloxone 242 +/- 7 days). Mean serum LH concentrations and LH pulse frequency were elevated by naloxone in ewe lambs at 20, 25, and 30 weeks of age (P less than 0.05). The only FSH response to naloxone was a depression of mean serum concentrations at 30 weeks of age (P less than 0.05). LH pulse amplitude was elevated at 5 weeks of age in all ewe lambs and declined thereafter to a nadir at 30 weeks of age in control, but not in naloxone-treated animals (P less than 0.05). LH pulse frequency was elevated at 10 weeks of age in control ewe lambs and in all animals at 30 weeks of age (P less than 0.05). FSH pulse frequency declined from 5 weeks of age in control ewe lambs (P less than 0.05), with very few pulses noted in 25- and 30-week-old animals. We conclude that (1) opioidergic suppression of LH, but not FSH, secretion developed at 20 weeks of age in the growing ewe lambs used in the present study, with no obvious change in suppression before the onset of first oestrus: (2) pulsatile FSH secretion occurred in the young ewe lamb but was lost as the lamb matured: (3) attainment of sexual maturity was preceded by an elevation in LH pulse frequency.  相似文献   

16.
The effect of carazolol on the ease of penetrating the cervix during artificial insemination, lambing rate and litter size was studied using 1.5–4.0-year old Kivircik ewes in an incomplete 3 × 2 × 2 experimental design. All of the ewes in this study were synchronized for oestrus by insertion of a progesterone impregnated vaginal sponge for 12 days and administration of 400 IU PMSG at sponge withdrawal. Three methods of service were compared: natural service, artificial insemination (AI) with fresh semen, or AI with frozen semen. Two times of insemination (fixed time AI versus AI at observed oestrus) were compared on the fresh and frozen AI treatments. The absence (control) or use of carazolol (carazolol; 0.5 mg/ewe i.m. 30 min before mating) was the third factor in the design and penetration of the cervix by the insemination pipette was assessed as shallow (<10 mm), middle (10–20 mm) or deep (>20 mm). Natural service ewes were only mated at observed oestrus. Consequently, the factorial design was incomplete and there were a total of 10 treatments each represented by 30 ewes. Natural service resulted in a significantly (P < 0.05) higher lambing rate and litter size (86%; 2.0 ± 0.05 lambs/ewe) than AI using fresh (65%; 1.6 ± 0.1 lambs/ewe) or frozen (40%; 1.4 ± 0.14 lambs/ewe) semen. For AI animals the lambing rate and litter size were not significantly different when service was at a fixed time (50%; 1.5 ± 0.12 lambs/ewe) or at observed oestrus (56%; 1.5 ± 0.12 lambs/ewe). Carazolol did not permit complete cervical penetration in any ewe. Deep penetration of the cervix at AI was achieved in 33% of untreated (control) and 48% of carazolol treated ewes (P < 0.05). However, the proportion of ewes in which penetration of the cervix and semen deposition was greater than shallow was similar for control (82%) and carazolol (85%), and lambing rate and litter size were similar for both treatments. Over the three service methods, the lambing rate was 56% for control and 63% for carazolol (NS) and litter size was similar for both treatments. It was concluded that the carazolol treatment used prior to natural mating or AI in this experiment did not improve lambing rate or litter size in Kivircik ewes.  相似文献   

17.
During the i.v. infusion of a depilatory dose (100 micrograms/kg bodyweight) of mouse epidermal growth factor (EGF) into ovariectomized Merino ewes the frequency of pulsatile LH release was significantly reduced. However, the amplitude of pulses of LH secretion, either those naturally occurring or those induced by LHRH injection, was unchanged or only slightly reduced. Similar infusions of mouse EGF were made in progestagen-treated anoestrous Merino ewes in which LH secretion was maintained by injections of LHRH. These ewes did not experience oestrus or ovulate in response to PMSG injected 1 day after mouse EGF treatment (2 days before progestagen withdrawal); both responses occurred in controls. The EGF-treated ewes experienced oestrus and ovulated following progestagen-PMSG treatment 6 weeks later. These results suggest that mouse EGF inhibits the hypothalamic pulse generator responsible for LH release in the ewe but has little if any effect on pituitary sensitivity to LHRH; and mouse EGF apparently has a direct effect on the ovaries, temporarily impairing their ability to ovulate in response to exogenous gonadotrophin.  相似文献   

18.
A high and a low response line in sheep were selected on the basis of the mean concentration of LH in 10-week-old Finn-Dorset ram lambs after an i.v. injection of 5 micrograms GnRH. After 8 male generations the mean LH response of the high line was more than 5-fold that of the low line and the heritability of the selected trait was estimated at 0.44 +/- 0.015. Highly significant line differences in mean LH response to GnRH were also found in males at 20 weeks of age and females at 10 and 20 weeks of age and the genetic correlations between the four LH response traits appear to be close to unity. Large line differences in the mean FSH response to GnRH were also found in both males and females at 10 and 20 weeks of age. Selection had little effect on the physical characteristics of lambs. High-response line ewes entering their first breeding season at about 7 months of age showed oestrus earlier in the season and had higher ovulation rates and numbers of lambs born per ewe lambing than did low-response line ewes. In the second breeding season, at about 19 months of age, the only line difference was a higher ovulation rate early in the breeding season in high-line ewes. It is suggested that these changes may be mediated by a more rapid response in high-line ewes to increased GnRH stimulation at puberty or at the beginning of the breeding season.  相似文献   

19.
After lambing forty-five ewes were allocated to three groups, two of sixteen and one of thirteen ewes. The lambs of the two groups of sixteen ewes were weaned on Day 1 after lambing and the ewes were fed a diet of 100% (Group H) or 50% (Group R) of maintenance energy requirements. The thirteen ewes in the third group (Group L) suckled twin lambs and were fed freely. During the first 3 weeks after lambing, oestrus was observed for 11/16 (Group H) and 8/16 (Group R) ewes; of the ewes which had shown oestrus in the two groups, ovulation occurred in 5/8 and 5/7 respectively. Only 1/13 Group-L ewes showed oestrus and ovulated during the same period. The mean plasma concentrations of progesterone and LH were unaffected by the treatments and were around 0-4 and 1-5 ng/ml, respectively. Restricted feeding had no effect on oestrus, ovulation or the hormone levels during the oestrus cycle following synchronization. The onset of oestrus and the start of the preovulatory discharge of LH were 3 and 6 hr later, respectively, in the lactating ewes (Group L) than in those in Groups H and R. Ewes in Group L also had a higher ovulation rate, 2-8 +/- 0-2 versus 2-1 +/- 0-2 (P less than 0-05). Restricted feeding reduced the number of ewes lambing; only 1/11 ewes in Group R, considered to have conceived because of the presence of high progesterone levels 17 days after mating, subsequently lambed compared with 6/12 in Group H and 5/9 in Group L.  相似文献   

20.
Circhoral administration (250 ng/h, i.v.) of GnRH induced a preovulatory-like surge of LH and subsequent luteal function in 4 of 4 ewe lambs 1 month before expected date of puberty. Within 12h of the start of pulsatile delivery of GnRH, mean concentrations of immunoactive and bioactive LH increased significantly (P less than 0.05) and the LH surge occurred by 1.8 +/- 0.6 days of treatment. Mean concentrations of serum progesterone were elevated significantly (P less than 0.001) 3 days after the surge. The biopotency of LH (bioactive LH/immunoactive LH) before the GnRH-induced surge of LH did not differ from LH biopotency in ewe lambs receiving circhoral delivery of saline (0.41 +/- 0.05 and 0.46 +/- 0.04, respectively). Biopotency of LH declined markedly at the GnRH-induced LH surge (0.25 +/- 0.04), but biopotency of serum LH was significantly augmented (P less than 0.05) during the period of luteal activity (0.70 +/- 0.07). Regular oestrous cycles were observed in 3 of 4 ewe lambs after the 10-day GnRH treatment period. These results indicate that pulsatile delivery of GnRH is effective in inducing precocious puberty in ewe lambs. Increase in LH biopotency does not appear to be required in the pubertal transition to reproductive cyclicity in this species. Augmented LH biopotency may be important in support of luteal function after first ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号