首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study attempts to understand the significance of Uvigerina proboscidea in paleoceanographic reconstructions at the northern (tropical) Indian Ocean DSDP Site 214 from the Late Miocene through the Pleistocene. In this interval at this site, U. proboscidea is the most abundant species of the benthic assemblage and shows abrupt frequency changes (about 1–74%). Based on relative percentages of U. proboscidea calibrated with oxygen and carbon isotope record and the sediment accumulation rates, the modern distribution of the species in the Indian Ocean, and other evidence, the peaks of abundance of U. proboscidea are inferred to represent times of high-surface productivity. This productivity is related to intensified trade winds during strong southwest (SW) Indian monsoons, causing widespread upwelling along equatorial divergence in the Indian Ocean. The sudden increase of U. proboscidea abundance at approximately 8.5–7.5 Ma reflects significant upwelling at the equatorial divergence. This event corresponds to the permanent build-up of West Antarctic ice sheets, and a major increase in SW Indian monsoons related upwelling in the northwestern Indian Ocean. The Chron-6 carbon shift at approximately 6.2 Ma is marked by another peak of abundance, reflecting widespread ocean fertility. The highest abundances of U. proboscidea and highest sediment accumulation rates occur between 5.8 and 5.1 Ma, which coincides with the greatest development of Antarctic ice sheets and strong southwest monsoons. The higher percentages at 3.2–3.1 Ma, approximately 2.4 Ma, and 1.6 Ma all represent phases of high productivity at the equatorial divergence.  相似文献   

2.
The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice‐free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from∼1.2 to∼0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans‐Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.  相似文献   

3.
The gephyrocapsids, main component of the Pleistocene calcareous nannofossil assemblages, are here discussed as biostratigraphical and paleoclimate tools. The occurrence of the genus Gephyrocapsa is quantitatively analysed in the core ODP 198-1209B, collected in the NW Pacific Ocean. The studied stratigraphic succession covers a time interval including the Middle Pleistocene Transition (MPT), a highly investigated period characterized by important global climate changes. During the Pleistocene, Gephyrocapsa is extremely abundant and provides several bioevents used in biostratigraphy. In addition to the known standard events, we observe the occurrence of particular Gephyrocapsa morphogroups and significant changes in the relative abundance of G. caribbeanica. In the Early-Middle Pleistocene we identify four intervals based on the Gephyrocapsa content. Moreover, during the MPT, the stratigraphic distribution of Gephyrocapsa underlines a dominance of both the small morphogroup and the medium-sized G. caribbeanica that could be dependent on their paleoecology. Small Gephyrocapsa and G. caribbeanica seem to be more competitive than other coccolithophores during the global oceanographic variations and the re-organisation of the glacial-interglacial periodicity during the MPT.  相似文献   

4.
Abstract:  Sixty-two species and 19 genera of elongate, cylindrical benthic foraminifera disappeared from the deep-sea in the south-east Atlantic (ODP Sites 1082 and 1083) and the Atlantic sector of the Southern Ocean (ODP Site 1088) during the Early and Middle Pleistocene as part of the global extinction of the families Pleurostomellidae, Stilostomellidae and portions of the Nodosariidae. During the mid-Pleistocene Climate Transition (1·2–0·6 Ma) in the Southern Ocean, these extinct taxa exhibited three pulses of glacial decline in abundance and diversity separated by partial interglacial recoveries. Beneath the high-productivity Benguela Current upwelling region (Sites 1082, 1083), glacial declines in the extinct taxa were suppressed by favourable high organic-carbon flux and consequent low-oxygen bottom conditions. Here two major pulses of diversity loss occurred at c.  1·3–1·2 Ma and 1·0–0·7 Ma. At all three locations, the most dramatic decline in abundance and diversity occurred c.  0·85–0·80 Ma (marine isotope stage 20), and the final disappearance of Extinction Group taxa was completed by 0·67 Ma beneath the Benguela Current and 0·60 Ma in the Southern Ocean. We speculate that this period of enhanced global extinctions was linked to a pulsed decline in glacial temperatures and/or increase in ventilation of deep and intermediate water masses, associated with polar ice cap growth since the late Pliocene.  相似文献   

5.
Archaea assemblages from the Arctic Ocean and Antarctic waters were compared by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified using the Archaea-specific primers 344f and 517r. Inspection of the DGGE fingerprints of 33 samples from the Arctic Ocean (from SCICEX submarine cruises in 1995, 1996, and 1997) and 7 Antarctic samples from Gerlache Strait and Dallman Bay revealed that the richness of Archaea assemblages was greater in samples from deep water than in those from the upper water column in both polar oceans. DGGE banding patterns suggested that most of the Archaea ribotypes were common to both the Arctic Ocean and the Antarctic Ocean. However, some of the Euryarchaeota ribotypes were unique to each system. Cluster analysis of DGGE fingerprints revealed no seasonal variation but supported depth-related differences in the composition of the Arctic Ocean Archaea assemblage. The phylogenetic composition of the Archaea assemblage was determined by cloning and then sequencing amplicons obtained from the Archaea-specific primers 21f and 958r. Sequences of 198 clones from nine samples covering three seasons and all depths grouped with marine group I Crenarchaeota (111 clones), marine group II Euryarchaeota (86 clones), and group IV Euryarchaeota (1 clone). A sequence obtained only from a DGGE band was similar to those of the marine group III Euryarchaeota.  相似文献   

6.
Quantitative study on calcareous nannofossil assemblages has been performed in high time resolution (2–3 kyr) at the Ocean Drilling Program Site 1090. The location of this site in the Southern Ocean is crucial for the comprehension of thermohaline circulation and frontal boundary dynamics, and for testing the employ of nannoflora as paleoceanographical tool. The chronologically well constrained investigated record spans between Marine Isotope Stage (MIS) 35 and 15, through an interval of global paleoclimate and paleoceanographical modification also known as mid-Pleistocene revolution (MPR). Measures of ecological (Shannon–Weaver diversity and paleoproductivity) and dissolution indices together with spectral and wavelet analyses carried out on the acquired time series provide valuable information for interpretation of data in terms of paleoecology and paleoceanography. Assemblages are mainly represented by dominant small Gephyrocapsa, common Calcidiscus leptoporus s.l., Coccolithus pelagicus s.l., Gephyrocapsa (4-5.5 μm), the extinct Pseudoemiliania lacunosa and Reticulofenestra spp. (R. asanoi and Reticulofenestra sp.). Morphotypes discriminated within Calcidiscus leptoporus s.l. and Coccolithus pelagicus s.l., reveal that they may have had different ecological preferences during Pleistocene with respect to the present. The composition and fluctuation in nannofossil assemblage and their comparison with the available Sea Surface Temperature (SST) and C-org curves suggest a primary ecological response to paleoenvironmental changes; relationships to different surface water features and boundary dynamics, as well as to different efficiencies and motions of the intermediate and deep water masses have been inferred. A more northward position of Subantarctic Front (SAF) during most of the Early Pleistocene record has been highlighted based on assemblage composition characterised by common Calcidiscus leptoporus s.l., Coccolithus pelagicus s.l., medium Gephyrocapsa (4–5.5 μm), and by the rarity or absence of Umbilicosphaera spp., Rhabdosphaera spp., Pontosphaera spp., Oolithotus fragilis. Exceptions are the more intense interglacials MIS 31, 17, and probably MIS 15, when a southward displacement of frontal system occurred, coincident with peaks in abundance of Helicosphaera spp. and Syracosphaera spp. Higher nutrient content and more dynamic conditions occurred between MIS 32 and MIS 25, in relation to shallower location of nutrient-rich Antarctic Intermediate Water (AAIW) core and to reduction of glacial–interglacial variability. A nannofossil barren interval is coincident with the known stagnation of South Atlantic deep water circulation during MIS 24, when North Atlantic Deep Water (NADW) was reduced or suppressed and an enhanced northward deep penetration of the more corrosive Circumpolar Deep Water (CPDW) took place. An event of strong instability in nutricline dynamics characterised the transition MIS 23–22 as suggested by sharp fluctuations in paleoproductivity proxies, linked to major changes in oceanographic circulation and to the first distinct increase of larger ice volumes at this time. From MIS 21 upward the nannofossil variations seem to be primarily controlled by glacial–interglacial cyclicity and temperature fluctuations. The cyclic fluctuation recognised in nannofossil abundance seems to be linked to orbitally-forced climatic variation, primarily to the obliquity periodicity recorded in the patterns of C. leptoporus intermediate (5–8 μm) and C. pelagicus pelagicus (6–10 μm); however no obvious and linear relations may be always observed between nannoflora fluctuation and Milankovitch parameters, suggesting more complex and unclear relationships between nannofossils and environmental change.  相似文献   

7.
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites.The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic ocean exchange.  相似文献   

8.
Herein we document findings from a unique scientific expedition north of Svalbard in the middle of the polar night in January 2012, where we observed an ice edge north of 82°N coupled with pronounced upwelling. The area north of Svalbard has probably been ice-covered during winter in the period from approximately 1790 until the 1980s, a period during which heavy ice conditions have prevailed in the Barents Sea and Svalbard waters. However, recent winters have been characterized by midwinter open water conditions on the shelf, concomitant with northeasterly along-shelf winds in January 2012. The resulting northward Ekman transport resulted in a strong upwelling of Atlantic Water along the shelf. We suggest that a reduction in sea ice and the upwelling of nutrient-rich waters seen in the winter of 2012 created conditions similar to those that occurred during the peak of the European whaling period (1690–1790) and that this combination of physical features was in fact the driving force behind the high primary and secondary production of diatoms and Calanus spp., which sustained the large historical stocks of bowhead whales (Balaena mysticetus) in Arctic waters near Spitsbergen.  相似文献   

9.
Spatial distribution patterns of benthic foraminifers in upper Albian sediments from 25 DSDP/ODP sites and 31 onshore sections of the North and South Atlantic Ocean are used to generate paleobathymetric reconstructions and to identify areas of high primary production such as coastal and equatorial upwelling zones. New paleobathymetric estimates are provided for DSDP/ODP sites and onshore locations that are not situated on oceanic crust. Paleobathymetric reconstructions indicate shallow water exchange between the North and South Atlantic but show the existence of a deep-water connection between the western and eastern Tethys (>2500 m) through the Gibraltar Gateway. Strikingly, there is no evidence for a strong latitudinal gradient in deep-water benthic foraminiferal distribution during the late Albian: South Atlantic assemblages show close affinity to North Atlantic and Tethyan assemblages, exhibiting only a minor degree of provincialism. Biogeographic patterns reveal a distinct asymmetry in late Albian paleoproductivity for the North Atlantic. As for the present day, the eastern margins of the Atlantic were generally more productive than the western margins, and a belt of enhanced carbon flux export to the seafloor can be traced around the north African coast, which probably corresponded to a zone of vigorous coastal upwelling. By contrast, assemblage composition in the South Atlantic generally reflects mesotrophic to oligotrophic conditions. Benthic foraminiferal distribution patterns, thus, provide robust proxy data to test predictions from paleocirculation and paleobathymetric models for the mid-Cretaceous Atlantic Ocean and adjacent margins.  相似文献   

10.
A Pliocene benthic foraminiferal fauna containing a previously unknown species association was found in the basal section of a piston core collected from the crest of Northwind Ridge (NWR) in the central Arctic Ocean. The fauna is dominated by Epistominella exigua, Cassidulina reniforme, Eponides tumidulus, Cibicides scaldisiensis, Lagena spp., Cassidulina teretis, Eponides weddellensis, Bolivina arctica, and Patellina corrugata. The presence of Cibicides scaldisiensis in the assemblage and the occurrence of Cibicides grossus higher in the core are indicative of an early Pliocene age. The morphologically distinctive species Cibicidoides sp. 795 of McNeil (in press) which occurs in the NWR core sample was previously known only from Oligocene through Miocene deposits in the Beaufort-Mackenzie Basin of Arctic Canada. Ehrenbergina sp. A and Cibicidoides aff. C. sp. 795, also present in the core, are new and endemic to the Arctic late Miocene and early Pliocene. These species, and possibly others, are survivors of the late Miocene (Messinian) sea-level crisis, which caused a significant faunal turnover in the Arctic Ocean. The predominantly calcareous assemblage indicates deposition above the calcium carbonate compensation depth in an upper bathyal environment. Paleogeographic affinities for the bulk of the assemblage indicate probable connections between the Arctic and the North Atlantic Oceans, but the endemic species identify environmental differences or partial isolation of the western Arctic Ocean. The species association suggests a cold but milder paleoclimate than that which existed during Pleistocene glacial intervals.  相似文献   

11.
C. Manno  A. K. Pavlov 《Hydrobiologia》2014,721(1):285-295
The timing of vertical migration in planktonic foraminifera (ex. ontogenetic, diel) is still an open debate. This work aims to investigate the diel vertical migration (DVM) of Neogloboquadrina pachyderma (N. pachyderma) and Turborotalita quinqueloba (T. quinqueloba) in the Arctic during the midnight sun. N. pachyderma and T. quinqueloba dominate the total assemblage in the cold Polar Water and warmer North Atlantic Water masses, respectively. Foraminifera were collected at several depths along the Fram Strait. Afterwards sampling was performed at the same station for 24 h at continuous and discrete time intervals. Results show no evidence of planktonic foraminifera DVM since there was no significant variability in the abundance and size distribution during the 24-h collection period. This finding provides information to improve the interpretation of foraminifera in paleoclimatic works. This is especially relevant in the Fram Strait as paleoclimatic studies in this region are fundamental to investigating the history of the Atlantic water inflow into the Arctic Ocean.  相似文献   

12.
The numerical dominance and ecological role of psychrophilic bacteria in bottom sediments, sea ice, surface water and melt pools of the polar oceans were investigated using isolates, colony forming units (CFU) and metabolic activities. All sediment samples of the Southern Ocean studied showed a clear numerical dominance of cold-loving bacteria. In Arctic sediments underlying the influence of cold polar water bodies psychrophiles prevailed also but they were less dominant in sediments influenced by the warm Atlantic Water. A predominance of psychrophiles was further found in consolidated Antarctic sea ice as well as in multiyear Arctic sea ice and in melt pools on top of Arctic ice floes. A less uniform adaptation response was, however, met in polar surface waters. In the very northern part of the Fram Strait (Arctic Ocean) we found bacterial counts and activities at 1 degree C exceeding those at 22 degrees C. In surface water of the Weddell Sea (Southern Ocean) psychrophiles also dominated numerically in early autumn but the dominance declined obviously with the onset of winter-water and a decrease of chlorphyll a. Otherwise in surface water of the Southern Ocean CFUs were higher at 22 degrees C than at 1 degree C while activities were vice versa indicating at least a functional dominance of psychrophiles. Even in the temperate sediments of the German Bight true psychrophiles were present and a clear shift towards cold adapted communities in winter observed. Among the polar bacteria a more pronounced cold adaptation of Antarctic in comparison with Arctic isolates was obtained. The results and literature data indicate that stenothermic cold adapted bacteria play a significant role in the global marine environment. On the basis of the temperature response of our isolates from different habitats it is suggested to expand the definition of Morita in order to meet the cold adaptation strategies of the bacteria in the various cold habitats.  相似文献   

13.
Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2–3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60–90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean.  相似文献   

14.
Jean Roman 《Geobios》1977,10(3):337-349
Echinolampas is a subtropical genus living in rather shallow water; one may regards it as a climatic marker. The theory of continental drift affords a rather good explanation for its distribution in space during Cenozoic era. It appears in Old Wolrd during Paleocene and it occurs in Central America during Middle Eocene; that implies it had to cross the already broad Atlantic Ocean; but at that time this ocean is not as broad at it is now. Migration along the shelf area which rimmed North Atlantic might have been impossible, owing to disruption of land connection between Europe and North America. Probably the migration occured in low latitudes and pelagic larvae were transported by one of the two equatorial currents. Diversity of the genus has much decreased during Late Eocene. The cause may be chiefly due to climatic deterioration, resulting from marine communication between North Atlantic and Arctic Ocean. Echinolampas occurs for the first time in Australia during Oligocene. One may suggest the possibility of a link between this late evidence and the quite remote position till then of Australian continent. During Miocene, the relative decrease in Echinolampas diversity in the Mediterranean Basin occurs as a result of the welding between Asia and Africa.  相似文献   

15.
Seven Ocean Drilling Program (ODP) sites recovered during ODP Leg 177 in the Atlantic sector of the Southern Ocean were analyzed to study the Pleistocene calcareous nannofossil record. Calcareous nannofossil events previously described from intermediate and low latitudes were identified and calibrated with available geomagnetic and stable isotope stratigraphic data. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronicity with those observed from warm and temperate latitudes. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in marine isotope stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed at MIS 5. MIS 6 is characterized by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from MIS 14 to 13. The LO of Reticulofenestra asanoi is observed within subchron C1r.1r and the FO of R. asanoi occurs at the top of C1r.2r. A re-entry of medium-sized Gephyrocapsa can be identified in some cores during subchron C1r.1n. The LO of large morphotypes of Gephyrocapsa is well correlated through the studied area, and occurs during the middle-low part of subchron C1r.2r, synchronous with other oceanic regions. The FO of Calcidiscus macintyrei and FO of medium-sized Gephyrocapsa occur in the studied area close to 1.6 Ma.  相似文献   

16.
Some holoplanktonic species are cosmopolitan and have continuous distribution in the world’s oceans. For most of these species it is not clear whether there is unhampered gene flow between far distant populations or they represent a complex of cryptic species. In the present study we investigated genetic diversity of the cosmopolitan chaetognath Eukrohnia hamata in order to identify its spatial structure. DNA-barcode fragment of the mitochondrial COI gene was determined and analyzed for E. hamata specimens collected in the Arctic Ocean, Atlantic Ocean, and Atlantic sector of the Southern Ocean. Five lineages were determined by the phylogenetic analysis with robust statistical support. Three lineages: Antarctic (Eh-1), Subantarctic (Eh-2), and Arctic (Eh-3) had significant genetic differences and were geographically separated. Two other lineages: Eh-4 and Eh-5, that had the smallest genetic difference, were observed together in tropical waters, but they were geographically separated from the other lineages. We suppose that geographical distribution of most of the E. hamata lineages is shaped by the large-scale oceanic fronts, considered as biogeographic boundaries for numerous zooplankton species. Genetic homogeneity of Arctic, Subantarctic, and Antarctic lineages was also shown, each within its regions of inhabit.  相似文献   

17.
Four radiolarian assemblages have been defined in recent seafloor sediments of the equatorial Pacific Ocean. The distribution of these assemblages corresponds to the modern pattern of oceanic circulation and water mass structure in this region: the eastern Pacific shallow permanent thermocline and the Equatorial Undercurrent; Peru Current upwelling and the oxygen minimum; the subtropical water mass; warm western tropical water and the North Equatorial Countercurrent. In twelve cores chosen to transect the region both longitudinally and latitudinally, the distribution of these four assemblages has been reconstructed for six time-intervals during the last 127,000 years: 18,000 B.P. (glacial Stage 2); 36,000 B.P. and 52,000 B.P. (interstadial Stage 3); 65,000 B.P. (glacial Stage 4); 82,000 B.P. and 120,000 B.P. (interglacial Stage 5). Atmospheric and oceanic circulation changes through time have been inferred from the reconstructed microfossil assemblage distributions. Changes in assemblage distributions indicate that variations in intensity, direction and mean position of the tradewinds caused marked changes in the oceanic circulation patterns through the last glacial cycle.Near the end of interglacial Stage 5, the disappearance of the North Equatorial Countercurrent from the eastern Pacific suggests that the mean position of the tradewinds was shifted to the south approximately 5° of latitude relative to the modern position, so that the Northeast trades prevented the flow of the North Equatorial Countercurrent into the eastern Pacific. Near the end of interstadial Stage 3, a change in wind direction occurred from predominantly zonal winds, which enhance equatorial divergence and surfacing of the Equatorial Undercurrent, to more meridional winds, which enhance coastal upwelling associated with the Peru Current.In the tropical Pacific Ocean, late Quaternary changes in atmospheric and oceanic circulation are linked with times of continental ice sheet growth in the Northern Hemisphere (i.e., the interglacial-to-glacial transitions across oxygen isotope stage boundaries 54 and 32). The major changes in circulation seem to occur a few thousand years in advance of the glacial episodes, at or near periods of ice sheet growth. This relationship indicates that changes in atmospheric circulation in the tropics led and influenced the development of conditions suitable for polar and continental ice sheet growth in the Northern Hemisphere.  相似文献   

18.
The coccolithophore assemblages in two ODP Sites (1237 and 1238) are studied in order to reconstruct the paleoenvironmental conditions in the tropical and equatorial Pacific during the last 800 kyr. Both ODP Sites are located in the two most significant upwelling zones of the tropical and equatorial Pacific: Peru and Equatorial upwelling, respectively. The two sites are considered to have had similar evolutions. The coccolith relative abundance, the nannofossil accumulation rate (NAR) and the N ratio (namely, the proportion of < 3 μm placoliths in relation to Florisphaera profunda) allow us to identify three different intervals. Interval I (0.86-0.45 Ma) and interval III (0.22-0 Ma) are related to weak upwelling and weak Trade Winds, as suggested by coccolithophore assemblages with low N ratios. Interval II (0.45-0.22 Ma), characterized by dominant Gephyrocapsa caribbeanica and very abundant “small” Gephyrocapsa and Gephyrocapsa oceanica, is conversely related to intense upwelling and enhanced Trade Winds.  相似文献   

19.
Heterotrophic marine flagellates (HF) are ubiquitous in the world''s oceans and represented in nearly all branches of the domain Eukaryota. However, the factors determining distributions of major taxonomic groups are poorly known. The Arctic Ocean is a good model environment for examining the distribution of functionally similar but phylogenetically diverse HF because the physical oceanography and annual ice cycles result in distinct environments that could select for microbial communities or favor specific taxa. We reanalyzed new and previously published high-throughput sequencing data from multiple studies in the Arctic Ocean to identify broad patterns in the distribution of individual taxa. HF accounted for fewer than 2% to over one-half of the reads from the water column and for up to 60% of reads from ice, which was dominated by Cryothecomonas. In the water column, many HF phylotypes belonging to Telonemia and Picozoa, uncultured marine stramenopiles (MAST), and choanoflagellates were geographically widely distributed. However, for two groups in particular, Telonemia and Cryothecomonas, some species level taxa showed more restricted distributions. For example, several phylotypes of Telonemia favored open waters with lower nutrients such as the Canada Basin and offshore of the Mackenzie Shelf. In summary, we found that while some Arctic HF were successful over a range of conditions, others could be specialists that occur under particular conditions. We conclude that tracking species level diversity in HF not only is feasible but also provides a potential tool for understanding the responses of marine microbial ecosystems to rapidly changing ice regimes.  相似文献   

20.
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号