首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A HPLC method was developed for determination of cimetidine in human plasma and urine. Plasma samples were alkalinized followed by liquid extraction with water-saturated ethyl acetate then evaporated under nitrogen. The extracts were reconstituted in mobile phase and injected onto a C(18) reversed-phase column; UV detection was set at 228 nm. Urine samples were diluted with an internal standard/mobile phase mixture (1:9) prior to injection. The lower limit of quantification in plasma and urine were 100 ng/ml and 10 microg/ml, respectively; intra- and inter-day coefficients of variation were 相似文献   

2.
A sensitive and selective high-performance liquid chromatographic method for the simultaneous determination of a new angiotensin II receptor blocking agent, losartan (DuP 753, MK-954, I), and its active metabolite, EXP3174 (II), in human plasma or urine is described. The two analytes and internal standard are extracted from plasma and urine at pH 2.5 by liquid—liquid extraction and analyzed on a cyano column with ultraviolet detection at 254 nm. The mobile phase is composed of acetonitrile and phosphate buffer at pH 2.5. The limit of quantification for both compounds in plasma is 5 ng/ml. The limit in urine is 20 and 10 ng/ml for I and II, respectively. The assay described has been successfully applied to samples from pharmacokinetic studies.  相似文献   

3.
Karenitecin is a novel, highly lipophilic camptothecin derivative with potent anticancer potential. We have developed a sensitive high-performance liquid chromatographic method for the determination of karenitecin concentration in human plasma and urine. Karenitecin was isolated from human plasma and urine using solid-phase extraction. Separation was achieved by gradient elution, using a water and acetonitrile mobile phase, on an ODS analytical column. Karenitecin was detected using fluorescence detection at excitation and emission wavelengths of 370 and 490 nm, respectively. Retention time for karenitecin was 16.2±0.5 min and 8.0±0.2 min for camptothecin, the internal standard. The karenitecin peak was baseline resolved, with the nearest peak at 3.1 min distance. Using normal volunteer plasma and urine from multiple individuals, as well as samples from the 50 patients analyzed to date, no interfering peaks were detected. Inter- and intra-day coefficients of variance were <4.4 and 7.1% for plasma and <4.9 and 11.6% for urine. Assay precision, based on an extracted karenitecin standard plasma sample of 2.5 ng/ml, was +4.46% with a mean accuracy of 92.4%. For extracted karenitecin standard urine samples of 2.5 ng/ml assay precision was +2.35% with a mean accuracy of 99.5%. The mean recovery of karenitecin, at plasma concentrations of 1.0 and 50 ng/ml, was 81.9 and 87.8% respectively. In urine, at concentrations of 1.5 and 50 ng/ml, the mean recoveries were 90.3 and 78.4% respectively. The lower limit of detection (LLD) for karenitecin was 0.5 ng/ml in plasma and 1.0 ng/ml in urine. The lower limit of quantification (LLQ) for karenitecin was 1 ng/ml and 1.5 ng/ml for plasma and urine, respectively. Stability studies indicate that when frozen at −70°C, karenitecin is stable in human plasma for up to 3 months and in human urine for up to 1 month. This method is useful for the quantification of karenitecin in plasma and urine samples for clinical pharmacology studies in patients receiving this agent in clinical trials.  相似文献   

4.
A rapid, sensitive and selective high-performance liquid chromatographic (HPLC) assay was developed for the determination of cibenzoline (Cipralan TM) in human plasma and urine. The assay involves the extraction of the compound into benzene from plasma or urine buffered to pH 11 and HPLC analysis of the residue dissolved in acetonitrile---phosphate buffer (0.015 mol/1, pH 6.0) (80:20). A 10-μ ion-exchange (sulfonate) column was used with acetonitrile—phosphate buffer (0.015 mol/1, pH 6.0) (80:20) as the mobile phase. UV detection at 214 nm was used for quantitation with the di-p-methyl analogue of cibenzoline as the internal standard.The recovery of cibenzoline in the assay ranged from 60 to 70% and was validated in human plasma and urine in the concentration range of 10–1000 ng/ml and 50–5000 ng/ml, respectively. A normal-phase HPLC assay was developed for the determination of the imidazole metabolite of cibenzoline. The assays were applied to the determination of plasma and urine concentrations of cibenzoline and trace amounts of its imidazole metabolite following oral administration of cibenzoline succinate to two human subjects.  相似文献   

5.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

6.
Automated procedures for the determination of CGP 33 101 in plasma and the simultaneous determination of CGP 33 101 and its carboxylic acid metabolite, CGP 47 292, in urine are described. Plasma was diluted with water and urine with a pH 2 buffer prior to extraction. The compounds were automatically extracted on reversed-phase extraction columns and injected onto an HPLC system by the automatic sample preparation with extraction columns (ASPEC) automate. A Supelcosil LC-18 (5 μm) column was used for chromatography. The mobile phase was a mixture of an aqueous solution of potassium dihydrogen phosphate, acetonitrile and methanol for the assay in plasma, and of an aqueous solution of tetrabutylammonium hydrogen sulfate, tripotassium phosphate and phosphoric acid and of acetonitrile for the assay in urine. The compounds were detected at 230 nm. The limit of quantitation was 0.11 μml/l (25 ng/mol) for the assay of CGP 33 101 in plasma, 11 μmol/l (2.5 μg/ml) for its assay in urine and 21 μmol/l (5 μg/ml) for the assay of CGP 47 292 in urine.  相似文献   

7.
A sensitive high-performance liquid chromatographic (HPLC) method with ultraviolet absorption detection (292 nm) was developed and validated for the determination of the new phosphodiesterase V inhibitor, DA-8159 (DA), in human plasma and urine. A single step liquid-liquid extraction procedure using ethyl ether was performed to recover DA and the internal standard (sildenafil citrate) from 1.0 ml of biological matrices combined with 200 microl of 0.1M sodium carbonate buffer. A Capcell Pak C18 UG120 column (150 mm x 4.6 mm I.D., 5 microm) was used as a stationary phase and the mobile phase consisted of 30% acetonitrile and 70% 20mM potassium phosphate buffer (pH 4.5) at a flow rate of 1.0 ml/min. The lower limit for quantification was 5 ng/ml for plasma and 10 ng/ml for urine samples. Within- and between-run accuracy and precision were < or =15 and < or =10%, respectively, in both plasma and urine samples. The recovery of DA from human plasma and urine was greater than 70%. Separate stability studies showed that DA is stable under the conditions of analysis. This validated assay was used for the pharmacokinetic analysis of DA during a phase I, rising dose study.  相似文献   

8.
Sensitive assays for the determination of cyclobenzaprine (I) in human plasma and urine were developed utilizing high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS-MS) and ultraviolet (UV) absorbance detections. These two analytical techniques were evaluated for reliability and sensitivity, and applied to support pharmacokinetic studies. Both methods employed a liquid-liquid extraction of the compound from basified biological sample. The organic extract was evaporated to dryness ,the residue was reconstituted in the mobile phase and injected onto the HPLC system. The HPLC assay with MS-MS detection was performed on a PE Sciex API III tandem mass spectrometer using the heated nebulizer interface. Multiple reaction monitoring using the parent → daughter ion combinations of m/z 276 → 215 and 296 → 208 was used to quantitate I and internal standard (II), respectively. The HPLC-MS-MS and HPLC-UV assays were validated in human plasma in the concentration range 0.1–50 ng/ml and 0.5–50 ng/ml, respectively. In urine, both methods were validatedin the concentration range 10–1000 ng/ml. The precision of the assays, as expressed as coefficients of variation (C.V.) was less than 10% over the entire concentration range, with adequate assay specificity and accuracy. In addition to better sensitivity, the HPLC-MS-MS assay was more efficient and allowed analysis of more biological fluid samples in a single working day than the HPLC-UV method.  相似文献   

9.
Two liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods are described, one for the quantitative determination of risperidone and the enantiomers of its active metabolite 9-hydroxyrisperidone (paliperidone) in human plasma and the other for the determination of the enantiomers of 9-hydroxyrisperidone in human urine. The plasma method is based on solid-phase extraction of 200 microl of sample on a mixed-mode sorbent, followed by separation on a cellulose-based LC column with a 13.5-min mobile phase gradient of hexane, isopropanol and ethanol. After post-column addition of 10 mM ammonium acetate in ethanol/water, detection takes place by ion-spray tandem mass spectrometry in the positive ion mode. Method validation results show that the method is sufficiently selective towards the enantiomers of 7-hydroxyrisperidone and capable of quantifying the analytes with good precision and accuracy in the concentration range of 0.2-100 ng/ml. An accelerated (run time of 4.3 min) and equally valid method for the enantiomers of 9-hydroxyrisperidone alone in plasma is obtained by increasing the mobile phase flow-rate from 1.0 to 2.0 ml/min and slightly adapting the gradient conditions. The urine method is based on the same solid-phase extraction and chromatographic approach as the accelerated plasma method. Using 100 microl of sample, (+)- and (-)-9-hydroxyrisperidone can be quantified in the concentration range 1-2000 ng/ml. The accelerated method for plasma and the method for urine can be used only when paliperidone is administered instead of risperidone, as there is insufficient separation of the 9-hydroxy enantiomers from the 7-hydroxy enantiomers, the latter ones being present only after risperidone administration.  相似文献   

10.
A method was developed for the rapid quantitative analysis of chlorpheniramine in plasma, saliva and urine using high-performance liquid chromatography. A diethyl ether or hexane extract of the alkalinized biological samples was extracted with dilute acid which was chromatographed on a reversed-phase column using mixtures of acetonitrile and ammonium phosphate buffer as the mobile phase. Ultraviolet absorption at 254 nm was monitored for the detection and brompheniramine was employed as the internal standard for the quantitation. The effects of buffer, pH, and acetonitrile concentration in the mobile phase on the chromatographic separation were investigated. A mobile phase 20% acetonitrile in 0.0075 M phosphate buffer at a flow-rate of 2 ml/min was used for the assays of plasma and saliva samples. A similar mobile phase was used for urine samples. The drug and internal standard were eluted at retention volumes of less than 17 ml. The method can also be used to quantify two metabolites, didesmethyl- and desmethylchlorpheniramine, in the urine. The method can accurately measure chlorpheniramine levels down to 2 ng/ml in plasma or saliva using 1 ml of sample, and should be adequate for biopharmaceutical and pharmacokinetic studies. Various precautions for using the assay are discussed.  相似文献   

11.
A high-performance liquid chromatographic method has been developed for the determination of the new podophyllotoxin derivative NK 611 in plasma samples. A solid—liquid extraction procedure with C18 extraction columns was used for extraction of plasma samples containing NK 611. The adsorbed NK 611 was eluted from the extraction columns with methanol—acetonitrile (50:50, v/v). The elution liquid was injected into a reversed-phase system consisting of a Chrompack C18 column. The mobile phase was acetonitrile—20 mM phosphate buffer, pH 7 (30:70, v/v). The UV detection mode allows sensitive determination of NK 611 in plasma within phase I trials. The limit of detection was 10 ng/ml, the limit of quantitation 35 ng/ml (for 1 ml of extracted plasma and 20-μl injection volume). The calibration curve is linear within the concentration range 100–1000 ng/ml. The recovery of NK 611 from spiked plasma samples was approximately 80%.  相似文献   

12.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

13.
A rapid, sensitive, and specific reversed-phase high-performance liquid chromatography assay was developed for the determination of 1,3,4-triphenylpyrazole-5-acetic acid (isofezolac) in plasma and urine. The assay involves extraction into diethyl ether from plasma buffered at pH 4.4. The organic phase is evaporated and the residue, dissolved in the mobile phase [acetonitrile—water—0.2 M phosphate buffer (pH 3) (65 : 15 : 20)] is chromatographed at a flow-rate of 1.5 ml/min. The drug is detected by its UV absorption (detection limit 100 ng/ml) or its very intense fluorescence (detection limit 10 ng/ml). Absolute analytical recoveries for isofezolac varied from 92.9 to 100.4%. The accuracy is ca. 1%. Each separation requires about 6 min. This method was applied successfully to the determination of isofezolac in humans for pharmacokinetic studies.  相似文献   

14.
A sensitive, stereoselective assay using solid phase extraction and LC-MS-MS was developed and validated for the analysis of (R)- and (S)-bupropion and its major metabolite (R,R)- and (S,S)-hydroxybupropion in human plasma and urine. Plasma or glucuronidase-hydrolyzed urine was acidified, then extracted using a Waters Oasis MCX solid phase 96-well plate. HPLC separation used an alpha(1)-acid glycoprotein column, a gradient mobile phase of methanol and aqueous ammonium formate, and analytes were detected by electrospray ionization and multiple reaction monitoring with an API 4000 Qtrap. The assay was linear in plasma from 0.5 to 200 ng/ml and 2.5 to 1000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. The assay was linear in urine from 5 to 2000 ng/ml and 25 to 10,000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. Intra- and inter-day accuracy was >98% and intra- and inter-day coefficients of variations were less than 10% for all analytes and concentrations. The assay was applied to a subject dosed with racemic bupropion. The predominant enantiomers in both urine and plasma were (R)-bupropion and (R,R)-hydroxybupropion. This is the first LC-MS/MS assay to analyze the enantiomers of both bupropion and hydroxybupropion in plasma and urine.  相似文献   

15.
A high-performance liquid chromatographic method for the determination of disodium dihydrogen(cycloheptylamino)methylenebisphosphonate monohydrate (YM175) in plasma, urine and bone is described. Plasma obtained in high-dose animal studies is pretreated by Method A, a simple method using 1 ml of plasma, which is based on deproteinization of plasma followed by coprecipitation of the drug with calcium phosphate and removal of excess calcium ions by AG 50W-X8 resin. Plasma obtained in lower-dose clinical studies is treated by Method B, a more sensitive method using 10 ml of plasma, which is based on solid-phase extraction using a Sep-Pak C18 cartridge coupled with Method A. Urine and bone are treated similarly to Method B. The chromatographic system consists of a mobile phase at pH 11, an alkali-stable column and an electrochemical detector operating in the oxidation mode. The determination limit is 5 ng/ml for Method A and 0.5 ng/ml for Method B in plasma, 1 ng/ml in urine, and 25 ng/g in bone.  相似文献   

16.
An improved, rapid and specific high-performance liquid chromatographic assay was developed for the determination of famotidine in human plasma and urine. Plasma samples were alkalinized and the analyte and internal standard (cimetidine) extracted with water-saturated ethyl acetate. The extracts were reconstituted in mobile phase, and injected onto a C18 reversed-phase column; UV detection was set at 267 nm. Urine samples were diluted with nine volumes of a mobile phase-internal standard mixture prior to injection. The lower limits of quantification in plasma and urine were 75 ng/ml and 1.0 μg/ml, respectively; intra- and inter-day coefficients of variation were ≤10.5%. This method is currently being used to support renal function studies assessing the use of intravenously administered famotidine to characterize cationic tubular secretion in man.  相似文献   

17.
A sensitive method has been developed for the determination of the vasoactive compounds cinnarizine and flunarizine in plasma, urine and milk samples from man and animals. The procedure involves the extraction of the drugs and their internal standard from the biological samples at alkaline pH, back-extraction into sulphuric acid and re-extraction into the organic phase (heptane—isoamyl alcohol).The analyses were carried out by gas chromatography using a nitrogen-selective thermionic specific detector. The detection limit was 0.5 ng/ml of biological fluid and extraction recoveries were sufficiently high (87–94%).The method was applied to plasma samples from bioavailability studies of both cinnarizine and flunarizine in healthy volunteers, and to plasma, urine and milk samples from flunarizine-treated dogs.  相似文献   

18.
A method is described for the qualiitative and quantitative determination of phenylbutazone and oxyphenbutazone in horse urine and plasma samples viewing antidoping control. A horse was administered intravenously with 3 g of phenylbutazone. For the qualitative determination, a screening by HPLC was performed after acidic extraction of the urine samples and the confirmation process was realized by GC-MS. Using the proposed method it was possible to detect phenylbutazone and oxyphenbutazone in urine for up to 48 and 120 h, respectively. For the quantitation of these drugs the plasma was deproteinized with acetonitrile and 20 gml were injected directly into the HPLC system equipped with a UV detector and LiChrospher RP-18 column. The mobile phase used was 0.01 M acetic acid in methanol (45:55, v/v). The limit of detection was 0.5 μg/ml for phenylbutazone and oxyphenbutazone and the limit of quantitation was 1.0 μg/ml for both drugs. Using the proposed method it was possible to quantify phenylbutazone up to 30 h and oxyphenbutazone up to 39 h after administration.  相似文献   

19.
A sensitive and specific method was developed and validated for the quantitation of quercetin in human plasma and urine. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a TurboIonspray (TIS) interface in negative mode under multiple reactions monitoring was investigated. Chromatographic separation was achieved on a C12 column using a mobile phase of acetonitrile/water with 0.2% formic acid (pH 2.4) (40/60, v/v). The detection limit was 100 pg/ml and the lower limit of quantification was 500 pg/ml for plasma samples; the detection limit was 500 pg/ml and the lower limit of quantification was 1 ng/ml for urine samples. The calibration curve was linear from 1 to 800 ng/ml for plasma samples and was linear from 1 to 200 and 50 to 2000 ng/ml for urine samples. All the intra- and inter-day coefficients of variation were less than 11% and intra- and inter-day accuracies were within +/-15% of the known concentrations. This represents a LC/MS/MS assay with the sensitivity and specificity necessary to determine quercetin in human plasma and urine. This assay was used to determine both parent quercetin and the quercetin after enzymatic hydrolysis with beta-glucuronidase/sulfatase in human plasma and urine samples following the ingestion of quercetin 500 mg capsules.  相似文献   

20.
A specific liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed and validated for the determination of lercanidipine, a dihydropyridine calcium channel blocker, in human plasma. Lercanidipine R-D3 was used as internal standard (IS). The drug was extracted from plasma using liquid-liquid extraction technique utilizing hexane: ethyl acetate as extraction solvent. The samples were analyzed using a prepacked Thermo Hypersil C(8) column and a mobile phase composed of a mixture of aqueous acetic acid and triethylamine in methanol. An ion trap mass spectrometer equipped with electrospray ionization (ESI) source operating in the positive ion mode was used to develop and validate the method. The method was proved to be sensitive and specific by testing six different human plasma batches. Linearity was established for the concentration ranges of 0.1-16 ng/ml with a regression factor of 0.9996. The lower limit of quantitation was identifiable and reproducible at 0.1 ng/ml with a precision of 7.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号