首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Factors affecting immune responses to influenza vaccines have not been studied systematically. We hypothesized that T-cell and antibody responses to the vaccines are functions of pre-existing host immunity against influenza antigens.

Methodology/Principal Findings

During the 2004 and 2005 influenza seasons, we have collected data on cellular and humoral immune reactivity to influenza virus in blood samples collected before and after immunization with inactivated or live attenuated influenza vaccines in healthy children and adults. We first used cross-validated lasso regression on the 2004 dataset to identify a group of candidate baseline correlates with T-cell and antibody responses to vaccines, defined as fold-increase in influenza-specific T-cells and serum HAI titer after vaccination. The following baseline parameters were examined: percentages of influenza-reactive IFN-γ+ cells in T and NK cell subsets, percentages of influenza-specific memory B-cells, HAI titer, age, and type of vaccine. The candidate baseline correlates were then tested with the independent 2005 dataset. Baseline percentage of influenza-specific IFN-γ+ CD4 T-cells was identified as a significant correlate of CD4 and CD8 T-cell responses, with lower baseline levels associated with larger T-cell responses. Baseline HAI titer and vaccine type were identified as significant correlates for HAI response, with lower baseline levels and the inactivated vaccine associated with larger HAI responses. Previously we reported that baseline levels of CD56dim NK reactivity against influenza virus inversely correlated with the immediate T-cell response to vaccination, and that NK reactivity induced by influenza virus depended on IL-2 produced by influenza-specific memory T-cells. Taken together these results suggest a novel mechanism for the homeostasis of virus-specific T-cells, which involves interaction between memory helper T-cells, CD56dim NK and DC.

Significance

These results demonstrate that assessment of baseline biomarkers may predict immunologic outcome of influenza vaccination and may reveal some of the mechanisms responsible for variable immune responses following vaccination and natural infection.  相似文献   

2.
登革病毒属黄病毒属,可通过蚊虫传播,感染人体后可引发一系列临床症状,从轻微发热到严重的并发症,称为登革热、登革出血热以及登革休克综合征。过去50年,全球登革热感染病例增加了约30倍。目前,全球热带、亚热带地区约占世界2/5的人口存在感染风险。由于缺乏有效的治疗药物,疫苗研究已成为登革热疾病防控的重心。然而,由于缺乏对病毒致病机理及病毒感染免疫应答深入的了解,候选疫苗的研发受到阻碍。但经过几十年的努力,疫苗研究取得了明显进展。目前正在研究的登革病毒疫苗依托各种技术平台,种类多样,对正处于临床前研究及临床试验阶段的不同类型疫苗进行阐述。  相似文献   

3.
4.
T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 26 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mounted at least one CD4 T-cell response, and 48% of individuals mounted detectable SARS-CoV-2-specific circulating T follicular helper cells (cTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific cTfh responses across all three protein specificities correlated with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, cTfh responses, particularly to the M protein, increased in convalescence, and robust cTfh responses with magnitudes greater than 5% were detected at the second convalescent visit, a median of 38 days post-symptom onset. CD4 T-cell responses declined but persisted at low magnitudes three months and six months after symptom onset. These data deepen our understanding of antigen-specific cTfh responses in SARS-CoV-2 infection, suggesting that in addition to S protein, M and N protein-specific cTfh may also assist in the development of neutralizing antibodies and that cTfh response formation may be delayed in SARS-CoV-2 infection.  相似文献   

5.
The RV144 trial demonstrated that an experimental AIDS vaccine can prevent human immunodeficiency virus type 1 (HIV-1) infection in humans. Because of its limited efficacy, further understanding of the mechanisms of preventive AIDS vaccines remains a priority, and nonhuman primate (NHP) models of lentiviral infection provide an opportunity to define immunogens, vectors, and correlates of immunity. In this study, we show that prime-boost vaccination with a mismatched SIV envelope (Env) gene, derived from simian immunodeficiency virus SIVmac239, prevents infection by SIVsmE660 intrarectally. Analysis of different gene-based prime-boost immunization regimens revealed that recombinant adenovirus type 5 (rAd5) prime followed by replication-defective lymphocytic choriomeningitis virus (rLCMV) boost elicited robust CD4 and CD8 T-cell and humoral immune responses. This vaccine protected against infection after repetitive mucosal challenge with efficacies of 82% per exposure and 62% cumulatively. No effect was seen on viremia in infected vaccinated monkeys compared to controls. Protection correlated with the presence of neutralizing antibodies to the challenge viruses tested in peripheral blood mononuclear cells. These data indicate that a vaccine expressing a mismatched Env gene alone can prevent SIV infection in NHPs and identifies an immune correlate that may guide immunogen selection and immune monitoring for clinical efficacy trials.  相似文献   

6.
Dengue virus (DENV) is a mosquito-borne virus with a rapid spread to humans, causing mild to potentially fatal illness in hundreds of millions of people each year. Due to the large number of serotypes of the virus, there remains an unmet need to develop protective vaccines for a broad spectrum of the virus. Here, we constructed a modified mRNA vaccine containing envelope domain III (E-DIII) and non-structural protein 1 (NS1) coated with lipid nanoparticles. This multi-target vaccine induced a robust antiviral immune response and increased neutralizing antibody titers that blocked all four types of DENV infection in vitro without significant antibody-dependent enhancement (ADE). In addition, there was more bias for Th1 than Th2 in the exact E-DIII and NS1-specific T cell responses after a single injection. Importantly, intramuscular immunization limited DENV transmission in vivo and eliminated vascular leakage. Our findings highlight that chimeric allogeneic structural and non-structural proteins can be effective targets for DENV vaccine and that they can prevent the further development of congenital DENV syndrome.  相似文献   

7.

Background

Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.

Methodology/Principal Findings

In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8+ and CD8 T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.

Conclusion/Significance

The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.  相似文献   

8.
With 2.5 billion people at risk, dengue is a major emerging disease threat and an escalating public health problem worldwide. Dengue virus causes disease ranging from a self-limiting febrile illness (dengue fever) to the potentially fatal dengue hemorrhagic fever/dengue shock syndrome. Severe dengue disease is associated with sub-protective levels of antibody, which exacerbate disease upon re-infection. A dengue vaccine should generate protective immunity without increasing severity of disease. To date, the determinants of vaccine-mediated protection against dengue remain unclear, and additional correlates of protection are urgently needed. Here, mice were immunized with viral replicon particles expressing the dengue envelope protein ectodomain to assess the relative contribution of humoral versus cellular immunity to protection. Vaccination with viral replicon particles provided robust protection against dengue challenge. Vaccine-induced humoral responses had the potential to either protect from or exacerbate dengue disease upon challenge, whereas cellular immune responses were beneficial. This study explores the immunological basis of protection induced by a dengue vaccine and suggests that a safe and efficient vaccine against dengue should trigger both arms of the immune system.  相似文献   

9.
With increasing geographic spread, frequency, and magnitude of outbreaks, dengue continues to pose a major public health threat worldwide. Dengvaxia, a dengue live-attenuated tetravalent vaccine, was licensed in 2015, but post hoc analyses of long-term data showed serostatus-dependent vaccine performance with an excess risk of hospitalized and severe dengue in seronegative vaccine recipients. The World Health Organization (WHO) recommended that only persons with evidence of past dengue infection should receive the vaccine. A test for pre-vaccination screening for dengue serostatus is needed. To develop the target product profile (TPP) for a dengue pre-vaccination screening test, face-to-face consultative meetings were organized with follow-up regional consultations. A technical working group was formed to develop consensus on a reference test against which candidate pre-vaccination screening tests could be compared. The group also reviewed current diagnostic landscape and the need to accelerate the evaluation, regulatory approval, and policy development of tests that can identify seropositive individuals and maximize public health impact of vaccination while avoiding the risk of hospitalization in dengue-naive individuals. Pre-vaccination screening strategies will benefit from rapid diagnostic tests (RDTs) that are affordable, sensitive, and specific and can be used at the point of care (POC). The TPP described the minimum and ideal characteristics of a dengue pre-vaccination screening RDT with an emphasis on high specificity. The group also made suggestions for accelerating access to these RDTs through streamlining regulatory approval and policy development. Risk and benefit based on what can be achieved with RDTs meeting minimal and optimal characteristics in the TPP across a range of seroprevalences were defined. The final choice of RDTs in each country will depend on the performance of the RDT, dengue seroprevalence in the target population, tolerance of risk, and cost-effectiveness.  相似文献   

10.
Influenza A virus is a negative-strand segmented RNA virus in which antigenically distinct viral subtypes are defined by the hemagglutinin (HA) and neuraminidase (NA) major viral surface proteins. An ideal inactivated vaccine for influenza A virus would induce not only highly robust strain-specific humoral and T-cell immune responses but also cross-protective immunity in which an immune response to antigens from a particular viral subtype (e.g., H3N2) would protect against other viral subtypes (e.g., H1N1). Cross-protective immunity would help limit outbreaks from newly emerging antigenically novel strains. Here, we show in mice that the addition of cationic lipid/noncoding DNA complexes (CLDC) as adjuvant to whole inactivated influenza A virus vaccine induces significantly more robust adaptive immune responses both in quantity and quality than aluminum hydroxide (alum), which is currently the most widely used adjuvant in clinical human vaccination. CLDC-adjuvanted vaccine induced higher total influenza virus-specific IgG, particularly for the IgG2a/c subclass. Higher levels of multicytokine-producing influenza virus-specific CD4 and CD8 T cells were induced by CLDC-adjuvanted vaccine than with alum-adjuvanted vaccine. Importantly, CLDC-adjuvanted vaccine provided significant cross-protection from either a sublethal or lethal influenza A viral challenge with a different subtype than that used for vaccination. This superior cross-protection afforded by the CLDC adjuvant required CD8 T-cell recognition of viral peptides presented by classical major histocompatibility complex class I proteins. Together, these results suggest that CLDC has particular promise for vaccine strategies in which T cells play an important role and may offer new opportunities for more effective control of human influenza epidemics and pandemics by inactivated influenza virus vaccine.  相似文献   

11.
Liu  Yaqing  Chi  Miaomiao  Liu  Ying  Wen  Hongling  Zhao  Li  Song  Yanyan  Liu  Na  Wang  Zhiyu 《Virology journal》2019,16(1):1-6
Dengue is an important mosquito-borne disease. There is currently only one licensed vaccine for dengue prevention. The vaccine provides higher efficacy in pre-vaccination dengue-seropositive persons but a higher risk of subsequent more severe dengue in dengue-seronegative persons. It is recommended that the dengue vaccine may be given in dengue-seropositive individuals or as mass vaccination without individual pre-vaccination screening in areas where the dengue seroprevalence is > 80% in children aged 9 years. We evaluated a dengue specific immunoglobulin G monoclonal antibody-based capture enzyme-linked immunosorbent assay (MAb-ELISA) in the diagnosis of previous dengue infection using serum samples from the cohort study in Ratchaburi Province, Thailand. The MAb-ELISA was compared to 70% plaque reduction neutralization test (PRNT70) in 453 serum samples from children aged 3–11 years in Ratchaburi Province, Thailand. The sensitivity and specificity of MAb-ELISA at the positive to negative (P/N) ratio cut-off level of > 3 were both 0.91 in the diagnosis of previous dengue infection, compared to PRNT70. The false positivity was mainly in Japanese encephalitis (JE) seropositive subjects. This research provides evidence that MAb-ELISA is useful for dengue seroprevalence study and dengue pre-vaccination screening. JE seropositivity was the major cause of false positive result in the study population.  相似文献   

12.
Dengue is a mosquito-borne viral disease of expanding geographical range and incidence. The existence of four viral serotypes and the association of prior dengue virus infection with an increased risk for more severe disease have presented significant obstacles to vaccine development. An increased understanding of the adaptive immune response to natural dengue virus infection and candidate dengue vaccines has helped to define the specific antibody and T cell responses that are associated with either protective or pathological immunity during dengue infection. Further characterization of immunological correlates of disease outcome and the validation of these findings in vaccine trials will be invaluable for developing effective dengue vaccines.  相似文献   

13.
Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log(10) increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.  相似文献   

14.
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.  相似文献   

15.
Dengue virus (DEN) causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome, which are major public health problems worldwide. The immune factors that control DEN infection or contribute to severe disease are neither well understood nor easy to examine in humans. In this study, we used wild-type and congenic mice lacking various components of the immune system to study the immune mechanisms in the response to DEN infection. Our results demonstrate that alpha/beta interferon (IFN-α/β) and IFN-γ receptors have critical, nonoverlapping functions in resolving primary DEN infection. Furthermore, we show that IFN-α/β receptor-mediated action limits initial DEN replication in extraneural sites and controls subsequent viral spread into the central nervous system (CNS). In contrast, IFN-γ receptor-mediated responses seem to act at later stages of DEN disease by restricting viral replication in the periphery and eliminating virus from the CNS. Mice deficient in B, CD4+ T, or CD8+ T cells had no increased susceptibility to DEN; however, RAG mice (deficient in both B and T cells) were partially susceptible to DEN infection. In summary, (i) IFN-α/β is critical for early immune responses to DEN infection, (ii) IFN-γ-mediated immune responses are crucial for both early and late clearance of DEN infection in mice, and (iii) the IFN system plays a more important role than T- and B-cell-dependent immunity in resistance to primary DEN infection in mice.  相似文献   

16.
Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.  相似文献   

17.
Yellow Fever vaccine is one of the most efficacious human vaccines ever made. The vaccine (YF 17D) virus induces polyvalent immune responses, with a mixed TH1/TH2 CD4+ cell profile, which results in robust T CD8+ responses and high titers of neutralizing antibody. In recent years, it has been suggested that early events after yellow fever vaccination are crucial to the development of adequate acquired immunity. We have previously shown that primary immunization of humans and monkeys with YF 17D virus vaccine resulted in the early synthesis of IFN-γ. Herein we have demonstrated, for the first time that early IFN-γ production after yellow fever vaccination is a feature also of murine infection and is much more pronounced in the C57BL/6 strain compared to the BALB/c strain. Likewise, in C57BL/6 strain, we have observed the highest CD8+ T cells responses as well as higher titers of neutralizing antibodies and total anti-YF IgG. Regardless of this intense IFN-γ response in mice, it was not possible to see higher titers of IgG2a in relation to IgG1 in both mice lineages. However, IgG2a titers were positively correlated to neutralizing antibodies levels, pointing to an important role of IFN-γ in eliciting high quality responses against YF 17D, therefore influencing the immunogenicity of this vaccine.  相似文献   

18.
19.
Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.  相似文献   

20.

Background

The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.

Methods

We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.

Results

The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.

Conclusion

These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号