首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings are vulnerable to many biotic and abiotic agents, and studying seedling dynamics helps understand mechanisms of species coexistence. In this study, the relative importance of biotic neighbors and habitat heterogeneity to seedling survival was examined by generalized linear mixed models for 33 species in a spruce‐fir valley forest in northeastern China. The results showed that the relative importance of these factors varied with species and functional groups. Conspecific negative density dependence (CNDD) was important to the survival of Abies nephrolepis and Picea koraiensis seedling, whereas phylogenetic negative density dependence (PNDD) was critical to Pinus koraiensis and Betula platyphylla, as well as functional groups of tree, deciduous, and shade‐intolerant seedlings. For shrubs and Acer ukurunduense, habitat heterogeneity was significant. Despite of the significance of CNDD, PNDD, and habitat heterogeneity on seedling survival, large proportions of the total variance were not accounted for by the studied variables, suggesting the needs to examine the influences of other factors such as pests, diseases, herbivores, forest structure, species functional traits, and microclimatic conditions on seedling survival in the future.  相似文献   

2.
Aims Seedlings are vulnerable to many kinds of fatal abiotic and biotic agents, and examining the causes of seedling dynamics can help understand mechanisms of species coexistence. To disentangle the relative importance of neighborhood densities, habitat factors and phylogenetic relatedness on focal seedling survival, we monitored the survival of 5306 seedlings of 104 species>15 months. We address the following questions: (i) How do neighborhood densities, habitat variables and phylogenetic relatedness affect seedling survival? What is the relative importance of conspecific densities, habitat variables and phylogenetic relatedness to seedling survival? (ii) Does the importance of the neighborhood densities, habitat variables and phylogenetic relatedness vary among growth forms, leaf habits or dispersal modes? Specially, does the conspecific negative density dependence inhibit tree and deciduous seedlings more compared with shrub and evergreen species? Does density dependence affect the wind and animal-dispersed species equally?Methods We established 135 census stations to monitor seedling dynamics in a 25-ha subtropical forest plot in central China. Conspecific and heterospecific seedling density in the 1-m 2 seedling plot and adult basal area within a 20-m radius provided neighborhood density variables. Mean elevation, convexity and aspect of every 5- × 5-m grid with seedling plots were used to quantify habitat characteristics. We calculated the relative average phylodiversity between focal seedling and heterospecific neighbors to quantify the species relatedness in the neighborhood. Eight candidate generalized linear mixed models with binominal error distribution were used to compare the relative importance of these variables to seedling survival. Akaike's information criteria were used to identify the most parsimonious models.Important findings At the community level, both the neighborhood densities and phylogenetic relatedness were important to seedling survival. We found negative effects of increasing conspecific seedlings, which suggested the existence of species-specific density-dependent mortality. Phylodiversity of heterospecific neighbors was negatively related to survival of focal seedlings, indicating similar habitat preference shared among phylogenetically closely related species may drive seedling survival. The relative importance of neighborhood densities, habitat variables and phylogenetic relatedness varied among ecological guilds. Conspecific densities had significant negative effect for deciduous and wind-dispersed species, and marginally significant for tree seedlings>10cm tall and animal-dispersed species. Habitat variables had limited effects on seedling survival, and only elevation was related to the survival of evergreen species in the best-fit model. We conclude that both negative density-dependent mortality and habitat preference reflected by the phylogenetic relatedness shape the species coexistence at seedling stage in this forest.  相似文献   

3.
《植物生态学报》2016,40(7):711
Aims Our study aimed to understand the effects and the relative importance of biotic neighborhood and habitat heterogeneity for tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain, north-eastern China.
Methods The generalized mixed linear model was used to examine the relative effects of biotic neighborhood and habitat heterogeneity on seedling survival over two years.
Important findings Our results showed that both biotic neighborhood and habitat heterogeneity had significant effects on the seedling survival at community level. The local environment suitable for the adult growth was also suitable for seedling survival. The soil moisture and soil available nitrogen exhibited significant positive effects on seedling survival. On the other hand, seedling density had significant negative effects on seedling survival due to the individual competition. Particularly, we found significant negative density-dependent effects on seedling survival which was caused by conspecific adult and seedling neighbors. As expected, with the increasing of seedling survival age, the habitat heterogeneity became more important on seedling survival. These results suggest that both local biotic neighborhood and habitat heterogeneity drive seedling survival in this temperate forest, and their relative importance varies with different seedling age classes and species traits.  相似文献   

4.
基于长白山次生针阔混交林样地, 以520个1 m × 1 m幼苗样方中胸径小于1 cm的乔木幼苗为研究对象, 选取2013年和2014年的幼苗调查数据, 运用广义线性混合模型(GLMM)分析了生物邻体和生境异质性对幼苗存活的影响, 探讨了次生针阔混交林幼苗存活影响因素及物种共存机制。结果表明: (1)适宜大树生长的局域生境同样也适宜幼苗的存活, 幼苗存活率与土壤含水量和有效氮等土壤养分显著正相关。(2)幼苗个体之间存在明显的竞争, 较多的幼苗邻体显著降低幼苗的存活率。同种大树邻体和同种幼苗邻体与幼苗存活显著负相关, 表明存在负密度制约效应。(3)随着幼苗年龄的增加, 生境异质性对幼苗存活的影响逐渐增大。该研究证实了密度制约效应和生境异质性对幼苗存活有着重要影响, 其相对重要性随着幼苗年龄级、功能群以及物种种类而变化。  相似文献   

5.
密度制约对物种共存起着重要作用。随着密度制约效应研究的深入, 亲缘关系较近的物种间表现出的密度制约效应逐渐被人们认识。本研究基于2009和2014年对宝天曼1 ha落叶阔叶林样地的2次调查数据, 利用广义线性混合模型分析了重要值排名前11位的物种不同邻域尺度的密度制约效应对不同径级(小径级(1 cm ≤ DBH < 5 cm)、中径级(5 cm ≤ DBH < 10 cm)、大径级(DBH ≥ 10 cm))目标个体存活的影响。研究表明: (1) 5年间样地中DBH ≥ 1 cm的所有个体的年均死亡率和增员率分别为5.85%和0.27%; (2)有5个物种的个体存活率与同种邻体个体数及同种邻体胸高断面积显著负相关; (3)小径级个体的存活在5 m的邻域范围内受同种密度制约和谱系密度制约的影响都很显著; 中径级个体在3个尺度上受到的密度制约和谱系密度制约的影响都不大; 大径级个体在7.5 m、10 m邻域范围内受谱系密度制约影响显著。结果表明, 同种密度制约和谱系密度制约效应对宝天曼落叶阔叶林不同生长阶段的树木个体影响不同。  相似文献   

6.
7.
8.
Negative density dependence (NDD) and environmental filtering (EF) shape community assembly, but their relative importance is poorly understood. Recent studies have shown that seedling's mortality risk is positively related to the phylogenetic relatedness of neighbours. However, natural enemies, whose depredations often cause NDD, respond to functional traits of hosts rather than phylogenetic relatedness per se. To understand the roles of NDD and EF in community assembly, we assessed the effects on seedling mortality of functional similarity, phylogenetic relatedness and stem density of neighbouring seedlings and adults in a species-rich tropical forest. Mortality risks increased for common species when their functional traits departed substantially from the neighbourhood mean, and for all species when surrounded by close relatives. This indicates that NDD affects community assembly more broadly than does EF, and leads to the tentative conclusion that natural enemies respond to phylogenetically correlated traits. Our results affirm the prominence of NDD in structuring species-rich communities.  相似文献   

9.
Negative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half‐mature forest (HF), a mature forest (MF), and an old‐growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (<20 cm in height) and younger seedlings (1–2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage.  相似文献   

10.
Ecology Letters (2010) 13: 1503-1514 ABSTRACT: The phylogenetic structure and distribution of functional traits in a community can provide insights into community assembly processes. However, these insights are sensitive to the spatial scale of analysis. Here, we use spatially explicit, neighbourhood models of tree growth and survival for 19 tree species, a highly resolved molecular phylogeny and information on eight functional traits to quantify the relative efficacy of functional similarity and shared ancestry in describing the effects of spatial interactions between tree species on demographic rates. We also assess the congruence of these results with observed phylogenetic and functional structure in the neighbourhoods of live and dead trees. We found strong support for models in which the effects of spatial neighbourhood interactions on tree growth and survival were scaled to species-specific mean functional trait values (e.g., wood specific gravity, leaf succulence and maximum height) but not to phylogenetic distance. The weak phylogenetic signal in functional trait data allowed us to independently interpret the static neighbourhood functional and phylogenetic patterns. We observed greater functional trait similarity in the neighbourhoods of live trees relative to those of dead trees suggesting that environmental filtering is the major force structuring this tree community at this scale while competitive interactions play a lesser role.  相似文献   

11.
植物物种多度受功能性状和负密度依赖共同影响——以中国南亚热带黑石顶森林样地为例 影响植物群落中植物物种多度的因素较多,确定关键影响因素及阐明其具体机制一直是群落生态学的研究重点之一。目前确定性的影响因素主要有两大类:植物功能性状和负密度依赖。功能性状通过影响植物的竞争能力、资源的获取效率、对环境的适应能力等方面进而影响植物的多度;负密度依赖表现在同种或异种植物个体在空间上聚集,特异性的寄主(病原菌、昆虫等)传播容易导致植物个体(主要为幼苗和小树)死亡,种群发生自疏,进而影响植物的多度。到目前为止,单一探究植物功能性状或负密度依赖对植物多度影响机制的研究已有大量报道,而将两者结合来探讨对植物多度的影响的工作相对较少。为了更深入地探索影响植物多度的机制,本研究中我们综合分析了功能性状与负密度依赖对植物多度的影响。研究地点为广东省黑石顶亚热带森林50 ha大样地;功能性状方面选取了叶面积(LA)、比叶面 积(SLA)、叶片干物质含量(LDMC)、叶片氮含量(LNC)和最大电子传输速率(ETRmax);植物物种所受负密度依赖强度通过构建小树在样地两次普查期间的存活状况受邻体密度影响的层次贝叶斯模型计算;通过结构方程模型构建功能性状-负密度依赖-物种多度的内在联系框架。结构方程模型结果显示,物种多度受功能性状和负密度依赖共同作用,其中功能性状对物种多度的影响包括直接作用和通过负密度依赖的间接作用。具体来说,SLA对多度的影响包括直接和间接两种;LDMC和LNC仅间接影响物种多度;LA和ETRmax对多度只有直接影响;负密度依赖与物种多度之间存在直接的负相关关系,说明多度较高的物种受到的负密度依赖效应更强。结构方程模型对物种多度差异的解释度达到20%。以上结果表明,黑石顶植物多度分布是功能性状与负密度依赖共同作用的结果;比叶面积在所研究的因素中贡献最大。该项工作有助于提高我们对亚热带森林植物常见种和稀有种分布格局的理解。  相似文献   

12.
幼苗是植物生活史中最脆弱的阶段,对幼苗存活影响因子的分析有助于我们更清楚的了解森林群落的天然更新机制。利用广义线性混合模型(GLMM)对八大公山常绿落叶阔叶混交林中影响幼苗存活的主要生物与非生物因子进行了研究。结果表明:(1)在群落水平上,幼苗存活与生物因子中的同种幼苗密度呈显著负相关,与非生物因子中的冠层开阔度呈显著正相关;(2)从年龄上看,4年生以下龄级的幼苗存活更容易受到同种幼苗密度的影响,与同种幼苗密度呈显著负相关;4年生及其以上的幼苗存活则主要受非生物因子影响;(3)从生活型上看,相对于常绿物种,落叶物种的幼苗存活率更容易受到同种幼苗密度的影响,也与冠层开阔度呈正相关;(4)在物种水平上,生物因子与非生物因子对不同物种幼苗存活率的影响也不相同。其中,宜昌润楠(Machilus ichangensis Rehd.et Wils.)的存活率与冠层开阔度呈正相关;薄叶山矾(Symplocos anomala Brand)幼苗的存活率与同种幼苗密度、异种大树胸高断面积、林冠开阔度、坡向均呈显著负相关,而与异种幼苗密度和海拔呈显著正相关。本研究表明影响幼苗存活的因子是多样的,而且不是随机发生的。在不同水平上影响幼苗存活的因子不同。  相似文献   

13.
Local tree species diversity is maintained in part by conspecific negative density dependence (CNDD). This pervasive mechanism occurs in a variety of forms and ecosystems, but research to date has been heavily skewed toward tree seedling survival in tropical forests. To evaluate CNDD more broadly, we investigated how sapling growth rates were affected by conspecific adult neighbors in a fully mapped 25.6 ha temperate deciduous forest. We examined growth rates as a function of the local adult tree neighborhood (via spatial autoregressive modeling) and compared the spatial positioning of faster‐growing and slower‐growing saplings with respect to adult conspecific and heterospecific trees (via bivariate point pattern analysis). In addition, to determine whether CNDD‐driven variation in growth rates leaves a corresponding spatial signal, we extended our point pattern analysis to a static, growth‐independent comparison of saplings and the next larger size class. We found that negative conspecific effects on sapling growth were most prevalent. Five of the nine species that were sufficiently abundant for analysis exhibited CNDD, while only one species showed evidence of a positive conspecific effect, and one or two species, depending on the analysis, displayed heterospecific effects. There was general agreement between the autoregressive models and the point pattern analyses based on sapling growth rates, but point pattern analyses based on single‐point‐in‐time size classes yielded results that differed markedly from the other two approaches. Our work adds to the growing body of evidence that CNDD is an important force in temperate forests, and demonstrates that this process extends to sapling growth rates. Further, our findings indicate that point pattern analyses based solely on size classes may fail to detect the process of interest (e.g., neighborhood‐driven variation in growth rates), in part due to the confounding of tree size and age.  相似文献   

14.
Classical tree neighborhood models use size variables acting at point distances. In a new approach here, trees were spatially extended as a function of their crown sizes, represented impressionistically as points within crown areas. Extension was accompanied by plasticity in the form of crown removal or relocation under the overlap of taller trees. Root systems were supposedly extended in a similar manner. For the 38 most abundant species in the focal size class (10–<100 cm stem girth) in two 4‐ha plots at Danum (Sabah), for periods P1 (1986–1996) and P2 (1996–2007), stem growth rate and tree survival were individually regressed against stem size, and neighborhood conspecific (CON) and heterospecific (HET) basal areas within incremented steps in radius. Model parameters were critically assessed, and statistical robustness in the modeling was set by randomization testing. Classical and extended models differed importantly in their outcomes. Crown extension weakened the relationship of CON effect on growth versus plot species’ abundance, showing that models without plasticity overestimated negative density dependence. A significant negative trend of difference in CON effects on growth (P2−P1) versus CON or HET effect on survival in P1 was strongest with crown extension. Model outcomes did not then support an explanation of CON and HET effects being due to (asymmetric) competition for light alone. An alternative hypothesis is that changes in CON effects on small trees, largely incurred by a drought phase (relaxing light limitation) in P2, and following the more shaded (suppressing) conditions in P1, were likely due to species‐specific (symmetric) root competition and mycorrhizal processes. The very high variation in neighborhood composition and abundances led to a strong “neighborhood stochasticity” and hence to largely idiosyncratic species’ responses. A need to much better understand the roles of rooting structure and processes at the individual tree level was highlighted.  相似文献   

15.
《植物生态学报》2018,42(6):653
以吉林蛟河次生针阔混交林42 hm 2固定监测样地中209个幼苗监测站内的乔木幼苗为研究对象, 基于2016和2017年幼苗调查数据, 探究幼苗物种组成、数量动态等特征, 并运用广义线性混合效应模型分析了幼苗密度与生物邻体及其生境因素的相关性。结果表明: (1)该样地内所有幼苗监测站共调查到幼苗4 245株, 分属10科12属18种, 新生幼苗的数量在物种和调查年份间均有明显差异, 其中水曲柳(Fraxinus mandschurica)和紫椴(Tilia amurensis)幼苗表现出大量出生和死亡的动态特征。(2)群落水平上, 幼苗密度与局域同种成体胸高断面积之和、土壤全磷和有效钾等养分含量显著正相关, 适宜大树生长的生境同样适宜幼苗的生长。(3)水曲柳幼苗密度的影响因素与群落水平一致, 红松(Pinus koraiensis)存在明显的生境偏好, 在湿度较小、土壤全磷、有效氮和有效磷含量较低的生境中密度更高。相对于多年生幼苗, 同种成年邻体对当年生幼苗密度影响更加显著。该研究证实了扩散限制和生境过滤共同影响幼苗密度格局, 生物邻体和生境异质性的相对重要性随幼苗物种种类和年龄级变化。  相似文献   

16.
以吉林蛟河次生针阔混交林42 hm 2固定监测样地中209个幼苗监测站内的乔木幼苗为研究对象, 基于2016和2017年幼苗调查数据, 探究幼苗物种组成、数量动态等特征, 并运用广义线性混合效应模型分析了幼苗密度与生物邻体及其生境因素的相关性。结果表明: (1)该样地内所有幼苗监测站共调查到幼苗4 245株, 分属10科12属18种, 新生幼苗的数量在物种和调查年份间均有明显差异, 其中水曲柳(Fraxinus mandschurica)和紫椴(Tilia amurensis)幼苗表现出大量出生和死亡的动态特征。(2)群落水平上, 幼苗密度与局域同种成体胸高断面积之和、土壤全磷和有效钾等养分含量显著正相关, 适宜大树生长的生境同样适宜幼苗的生长。(3)水曲柳幼苗密度的影响因素与群落水平一致, 红松(Pinus koraiensis)存在明显的生境偏好, 在湿度较小、土壤全磷、有效氮和有效磷含量较低的生境中密度更高。相对于多年生幼苗, 同种成年邻体对当年生幼苗密度影响更加显著。该研究证实了扩散限制和生境过滤共同影响幼苗密度格局, 生物邻体和生境异质性的相对重要性随幼苗物种种类和年龄级变化。  相似文献   

17.
18.
Multiple niche‐based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density‐dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first‐year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density‐dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow‐growing and well‐defended species. Niche differentiation along the growth–survival trade‐off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed‐size variation and promote species coexistence through a tolerance–fecundity trade‐off.  相似文献   

19.
  1. Multiyear drought is projected to increase in frequency and duration in arid and semiarid regions across the world, threatening native species and ecosystem function. The effects of multiyear drought are often exacerbated by human water use for consumption, energy production, and agriculture, which, in lentic ecosystems, manifest in reduced lake elevation and altered habitat for aquatic species.
  2. Here, we demonstrate that decreasing lake levels, associated with drought and water management, reduce the availability of littoral cobble habitat to fishes by creating an elevation‐explicit littoral habitat map. We combined long‐term fish catch data and a lake elevation time series with our elevation‐explicit littoral habitat map to test whether fish species population demographics are related to drought‐driven changes in littoral habitat.
  3. We surveyed the littoral zone of Bear Lake, Utah and Idaho, U.S.A., from full pool to a depth of >12 m, totalling 94.86 km2 surveyed. As lake elevation decreased >6 m from full pool to the lowest historical elevation, the area of littoral cobble decreased by >97%. Bear Lake sculpin (Cottus extensus, Cottidae), a cold‐water fish species which relies on cobble for reproduction, catch per unit effort decreased by >75% with littoral cobble, and year class strength declined by as much as 86%, but varied across age.
  4. We predicted the response of age‐0 to age‐4 sculpin under high and low cobble availability. Our simulations predict a 60%–85% decline in juvenile sculpin CPUE (age‐2 and younger) when cobble availability decreases from the 95th to 5th percentile.
  5. Our study provided a unique opportunity to identify quantitative linkages between climate‐driven littoral habitat loss and an ecologically important profundal fish species, expanding our understanding of potential future pathways through which climate change may affect lentic ecosystems and fishes.
  相似文献   

20.
Conspecific negative density dependence (CNDD) is one of the main mechanisms influencing diversity maintenance in tropical forests. Tropical highland forests, in contrast to most lowland forests, are commonly dominated by a few tree species, and testing the importance of density dependence effects on seedling establishment of dominant trees may provide insights on the mechanisms regulating population dynamics and forest composition of tropical highlands. We tested the effect of CNDD regulation on seedling survival and recruitment of Quercus costaricensis, a monodominant oak in the Talamanca highland forests of Costa Rica. We used Ripley's K and generalized linear mixed models to test the effects of conspecific density, distance to the nearest adult, density of Chusquea bamboo shoots, and herbivory on the annual survival probability of 3579 seedlings between 2014 and 2017. We did not find a significant effect of CNDD on seedling survival. However, bamboo density and herbivory both significantly decreased oak seedling survival. All seedlings had signs of herbivory and predator satiation may explain the lack of density dependent regulation in seedlings of this species. We argue that the lack of intraspecific density regulation at the seedling stage may contribute to explain the dominance of Q. costaricensis in the highland forests of Costa Rica. Local seedling dynamics of this endemic oak are instead regulated by herbivory and the density of Chusquea. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号