首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research has shown that administration of either testosterone or estradiol to male quail embryos will demasculinize behavior and morphology. Six experiments in which embryos were treated were conducted to test the hypothesis that this testosterone-induced demasculinization is due to conversion of testosterone to estrogen (aromatization). In Experiment 1, dihydrotestosterone propionate, a nonaromatizable androgen, failed to demasculinize copulatory behavior, but did demasculinize crowing, strutting, and proctodeal glands. In Experiment 2, injection of the aromatizable androgens testosterone propionate (TP), testosterone, or androstenedione demasculinized copulatory behavior, the nonaromatizable androgen androsterone failed to have such an effect, and all androgens demasculinized proctodeal glands. In Experiment 3, Silastic implants of testosterone demasculinized all male characteristics, whereas implants of androsterone demasculinized only proctodeal glands. In Experiment 4, the antiestrogen tamoxifen prevented TP from demasculinizing copulatory behavior, but had no such effect with respect to crowing and strutting. In Experiments 5 and 6, the aromatization inhibitor 1,4,6-androstatrien-3,17-dione (ATD) prevented TP but not estradiol benzoate from demasculinizing copulatory behavior. Thus (1) in quail, testosterone-induced demasculinization of copulatory behavior is due to androgen aromatization, whereas testosterone-induced demasculinization of crowing, strutting, and proctodeal glands is not; (2) the distinct components of normal male reproductive behavior exhibit different patterns of steroid specificity during the organizational period, as was previously shown for the activational period; (3) the steroid specificity of crowing, strutting, and proctodeal glands changes between the organizational and activational periods. During organization, there is little specificity, whereas during activation, these characteristics respond only to androgens, never to estrogens. This difference suggests that developmental changes have occurred in the underlying biochemical substrates.  相似文献   

2.
In adult male quail, the activation of sexual behavior by testosterone (T) is mediated at the cellular level by the interaction of T metabolites with intracellular steroid receptors. In particular, the aromatization of T into an estrogen plays a key limiting role. Nonaromatizable androgens such 5alpha-dihydrotestosterone (DHT) synergize with estradiol (E2) to activate the behavior. Given that the density of vasotocin (VT) immunoreactive structures is increased by T in adult male quail and that VT injections affect male behavior, we wondered whether the expression of VT is also affected by T metabolites such as E2 and DHT. We analyzed here, in castrated male quail, the effects of a treatment with T, E2, DHT, or E2 + DHT on sexual behavior and brain VT immunoreactivity. The restoration by T of the VT immunoreactivity in the medial preoptic nucleus, bed nucleus striae terminalis, and lateral septum of castrated male quail could be fully mimicked by a treatment with E2. The androgen DHT had absolutely no effect on the VT immunoreactivity in these conditions and, at the doses used here, DHT did not synergize with E2 to enhance the density of VT immunoreactive structures. These effects of T metabolites in the brain were not fully correlated with their effects on the activation of male copulatory behavior, suggesting that the increase in VT expression in the brain does not represent a necessary step for the activation of behavior. Although VT expression in the medial preoptic nucleus and bed nucleus striae terminalis is often tightly correlated with the expression of male copulatory behavior, VT presumably does not represent simply one step in the biochemical cascade of events that is induced by T in the brain and leads to the expression of male sexual behavior.  相似文献   

3.
Intracranial implantation of minute pellets of gonadal steroids was combined with aromatase inhibitor treatment to determine if aromatization within the preoptic area (POA) is necessary for androgens to activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, implantation of pellets of testosterone propionate (TP) or estradiol benzoate (EB) in the POA of castrated males restores male-typical copulatory behavior. In Experiment 1, adult male castrated quail were implanted intracranially with 200-micrograms pellets of equimolar mixtures of crystalline TP + cholesterol (CHOL), TP + 1,4,6-androstatriene-3,17-dione (ATD, an aromatase inhibitor), EB + ATD, or CHOL and behavior-tested with intact males and females. Copulation was stimulated by POA implants containing TP or EB (three of six CHOL + TP males and two of seven ATD + EB males copulated vs zero of four CHOL males), but copulation was not inhibited by combining ATD with TP (three of four ATD + TP males copulated). In Experiment 2, adult male castrated quail were injected systemically with ATD or oil for 6 days prior to and 14 days after intracranial implantation of 200-micrograms pellets containing the same amounts of TP or EB as in Experiment 1. The ATD injections completely blocked copulatory behavior in males with TP implants in the POA such that ATD/TP and Oil/TP mount frequencies differed significantly, but failed to block copulation in males with EB implants in the POA (proportions of males copulating were ATD/EB, 6/8; ATD/TP, 0/6; Oil/TP, 4/7). The cloacal foam gland, an androgen-sensitive secondary sex character, was unaffected by the dose of ATD used. We conclude that activation of copulatory behavior by TP implants in the POA is not due to nonspecific effects of high local testosterone concentrations but rather to aromatization. These results support the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to activation of male-typical copulatory behavior.  相似文献   

4.
Testosterone has been shown to increase the volume of steroid-sensitive brain nuclei in adulthood in several vertebrate species. In male Japanese quail the volume of the male-biased sexually dimorphic medial preoptic nucleus (POM), a key brain area for the control of male sexual behavior, is markedly increased by testosterone. Previous studies assessed this effect after a period of 8–14 days but the exact time course of these effects is unknown. We asked here whether testosterone-dependent POM plasticity could be observed at shorter latencies. Brains from castrated male quail were collected after 1, 2, 7 and 14 days of T treatment (CX+T) and compared to brains of untreated castrates (CX) collected after 1 or 14 days. POM volumes defined either by Nissl staining or by aromatase immunohistochemistry increased in a time-dependent fashion in CX+T subjects and almost doubled after 14 days of treatment with testosterone while no change was observed in CX birds. A significant increase in the average POM volume was detected after only one day of testosterone treatment. The optical density of Nissl and aromatase staining was also increased after one or two days of testosterone treatment. Activation of male copulatory behavior followed these morphological changes with a latency of approximately one day. This rapid neurochemical and neuroanatomical plasticity observed in the quail POM thus seems to limit the activation of male sexual behavior and offers an excellent model to analyze features of steroid-regulated brain structure and function that determine behavior expression.  相似文献   

5.
Intracranial implantation of minute pellets of gonadal steroids was performed to determine neuroanatomical loci at which steroids activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, systemic treatment of castrated males with either testosterone propionate (TP) or estradiol benzoate (EB) restores male-typical copulatory behavior (head grabbing, mounting, and cloacal contact movements). In addition, EB activates female-typical receptive behavior (crouching). Adult male castrated quail were implanted intracranially with 300-micrograms pellets containing TP, EB, or cholesterol (CHOL) and behavior was tested with intact males and females. Either TP or EB pellets in the preoptic area (POA) activated male-typical copulatory behavior. Mounting was specifically activated without concomitant activation of other steroid-sensitive sexual and courtship behaviors. TP and EB implants in adjacent nuclei containing receptors for these steroids and CHOL implants in POA had no effect on male-typical copulatory behavior. Eighteen percent of all males tested for female-typical receptivity crouched, but no specific effect of EB was seen at any site. The similarity of the POA sites for activation of mounting by TP and EB is consistent with the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to behavioral activation.  相似文献   

6.
A new triazole derivative, R76713 (6-[4-chlorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1-methyl-1H- benzotriazole), was recently shown to inhibit aromatase selectively without affecting other steroid-metabolizing enzymes and without interacting with estrogen, progestin, or androgen receptors. This compound was tested for its capacity to intefere with the induction of copulatory behavior by testosterone (T) in castrated Japanese quail (Coturnix coturnix japonica). In a first experiment, R76713 inhibited (range 0.01 to 1 mg/kg) the activation of sexual behavior by T silastic implants and hypothalamic aromatase activity in castrated male quail in a dose-dependent manner. The 5 alpha- and 5 beta- reductases of T were not systematically affected. Stereotaxic implantation of R76713 in the medial preoptic area similarly blocked the behavior activated by systemic treatment with T, demonstrating that central aromatization of androgen is implicated in the activation of behavior. These inhibiting effects of R76713 on behavior were observed when implants were placed in the medial part of the nucleus preopticus medialis, confirming the implication of this brain area in the control of male copulatory behavior. Finally, the behavioral inhibition produced by R76713 could be reversed by simultaneous treatment with a dose of estradiol, which was not behaviorally effective by itself. This suggests that the behavioral deficit induced by the inhibitor was specifically due to the suppression of estrogen production. This also shows that the activation of copulatory behavior probably results from the interaction of androgens and estrogens at the brain level, as the two treatments separately providing these hormonal stimuli (T with the aromatase inhibitor on one hand and a low dose of estradiol on the other hand) had almost no behavioral effects but they synergized to activate copulation when given concurrently. These data confirm the critical role of preoptic aromatase in the activation of reproductive behavior and demonstrate that R76713 is a useful tool for the in vivo study of estrogen-dependent processes.  相似文献   

7.
The sexual interactions of Saguinus fuscicollis males castrated as neonates, at 37 days of age, or prepubertally with adult intact females were studied. Prepubertally castrated males were observed while receiving testosterone, and while being treated with saline. Males castrated neonatally or at 37 days of age were observed while receiving testosterone. Neonatal castrates had previously been studied without hormone treatment and therefore no control condition was included for these animals. Prepubertally castrated males showed Mounts, Mounts with Thrusts, and Sexual Tongue Flicking when treated with saline only. In three of the four males, all measures of sexual behavior increased with testosterone treatment. Neonatally castrated males had failed to display any mounting or thrusting without testosterone treatment during a previous study. During the present study, three of the four males did not respond to testosterone treatment with sexual behavior. The fourth male and one male castrated at 37 days of age displayed some sexual behavior. These results suggest that most neonatally castrated males are not able to respond to testosterone with the activation of copulatory behavior. The findings are consistent with the hypothesis that in callitrichids the sensitive period for behavioral differentiation is shifted into neonatal life. However, some neonatally castrated males show a weak response to testosterone. This may reflect an extended and perhaps partially prenatal period of sensitivity.  相似文献   

8.
Two experiments were performed to characterize the process of postnatal demasculinization in Japanese quail. In the first experiment, it was shown that estradiol (E2) can complete female demasculinization during the first 4 weeks of life. By contrast, E2 did not demasculinize sexual behavior and cloacal gland in neonatally castrated males. Neonatally gonadectomized females preferentially performed mount attempts when tested in their home cage by comparison to a test arena. In Experiment 2, E2 Silastic implants (40-mm) maintained full copulatory behavior in castrated males but not in females. This large dose of E2 did not demasculinize adult sexually active birds (males or females) even if treatment lasted for 1 month. It is concluded that E2 can demasculinize sexual behavior only in females and only if treatment is performed in very young birds.  相似文献   

9.
One-gram implants of testosterone were placed subcutaneously in two adult intact and one castrated red deer hinds, and 100-mg implants of estradiol-17β were given to three castrated and two intact red deer stags. Their sexual behavior was then observed in the wild and in captivity for up to 3 years. Testosterone initially produced prolonged and intense estrous behavior in the hinds; this gradually gave way to behavior normally shown only by rutting stags, such as flehmen, herding threats, and roaring. Testosterone-implanted hinds rose in the dominance hierarchy as measured by competition for food. Pregnancy, or the administration of progestagens, suppressed most of this testosterone-induced behavior. Testosterone also induced development of male secondary sexual characteristics such as formation of small antler pedicles (but not antlers), hypertrophy of the clitoris and neck musculature, and development of a neck mane and male rutting odor. Estradiol-17β mimicked the behavioral effects of testosterone when given to castrated stags, stimulating all components of rutting behavior. In intact stags, the only effects were to abolish antler casting and stimulate roaring; normal rutting behavior continued unchanged. In contrast to the effects of testosterone, estradiol-17β did not influence the social status of either intact or castrated stags. The distinctions between the behavioral effects of androgens and estrogens are ill defined and are determined more by the prior sexual differentiation of the brain and the duration of steroid treatment, than by the nature of the steroid.  相似文献   

10.
A series of three experiments compared the inhibitory effects of progesterone on estrogen- or androgen-induced sexual behavior in male and female hamsters. In the first experiment chronic progesterone treatment was found to have no effect on male copulatory behavior maintained after castration with testosterone propionate or estradiol benzoate. However, testosterone propionate was more effective at maintaining male behavior than estradiol benzoate. In the second experiment progesterone was found to have a slight inhibitory effect on the rate of the restoration of the intromission response after androgen treatment in males which had been castrated for 8 weeks. In the final experiment, chronic progesterone treatment markedly inhibited sexual receptivity in male and female hamsters which had been given 4 weeks of androgen or estrogen treatment and a single pretest injection of progesterone. Thus, progesterone was shown to be a potent inhibitor of androgen- or estrogen-induced estrus in both male and female hamsters. Due to the large difference in effectiveness on these two behavioral systems, we suggest that progesterone affects steroid-induced male copulatory behavior and female receptivity by different mechanisms of action.  相似文献   

11.
Three experiments were performed to analyze the time course of demasculinization in the Japanese quail and to test the activating and organizing effects of estradiol (E2) in adult sexually active birds. In Experiment 1, males and females were castrated at the age of 1 day or 1, 2, 4, and 6 weeks and treated as adults with testosterone (T). The age of castration had no effect on behavior and morphology in males. Plasma gonadotrophins (LH and FSH) were, however, higher in males castrated at or before than in those castrated after 2 weeks of age. This suggests that postnatal testicular secretions have organizing effects on the pituitary activity. Females which were castrated before 1 week of age were less sensitive to the activating effects of T than males, but were not fully demasculinized. The demasculinization of different reproductive characteristics such as male sexual behavior, cloacal gland size, and weight of the syringeal muscles is achieved in females at different times posthatching. In Experiment 2, castration of male and female quail at the ages of 4 days or 4 weeks confirmed that postnatal ovarian secretions contribute to the full behavioral and morphological demasculinization of females. It is easier to elicit mounting in T-treated females when they are tested in their home cage instead of a test arena. This difference was not observed in males. During Experiment 3, it was impossible to demasculinize sexually active adult males or females by treatment with Silastic implants of E2. E2 did not maintain sexual behavior in ovariectomized females showing male sexual behavior when treated with T but maintained the behavior in males.  相似文献   

12.
The effects of hyperprolactinemia on male copulatory behavior in adult male and female rats were studied. Hyperprolactinemia was induced by the transplantable purely prolactin-secreting tumor 7315b. Male rats were castrated and received testosterone-filled capsules of different sizes which induced normal and subnormal testosterone levels. After sexual training the rats of the experimental groups were inoculated with tumor 7315b. Three weeks after tumor-inoculation high prolactin levels (2000-30000 ng/ml) were found. During this hyperprolactinemia ejaculation latency increased significantly, while the mount frequency and intromission frequency remained unchanged. Only 9 out of 22 rats ejaculated 19 days after inoculation. Moreover, it appeared that the inhibitory effect of the tumor was as strong in the presence of normal (2.33 +/- 0.07 ng/ml) as in the presence of low (0.35 +/- 0.01 ng/ml) testosterone levels. The inhibitory effect of tumor 7315b on copulatory behavior was not influenced by adrenalectomy. In gonadectomized female rats bearing testosterone-filled capsules tumor 7315b induced prolactin levels of about 2000 ng/ml and an almost complete cessation of mounts and intromission patterns 4 weeks after tumor-inoculation. It was concluded that tumor 7315b causes a strong inhibitory effect on male copulatory behavior in male and female rats and that this effect is not influenced by the presence of normal or low testosterone levels or removal of the adrenals, suggesting a direct effect of prolactin on brain functions.  相似文献   

13.
Sexual differentiation in quail: critical period and hormonal specificity   总被引:3,自引:0,他引:3  
There is a discrepancy between results showing that male quail are demasculinized by exogenous estrogens only if the treatment is given before Day 12 of egg incubation and results showing that ovariectomy of females after hatching still affects their sexual differentiation which leads to the conclusion that female demasculinization by ovarian estrogens is a continuing process extending into posthatching life. The first experiment was performed to test different models which have been proposed to reconcile these apparently contradictory results. Male and female quail were treated with 0, 5, or 25 micrograms of estradiol benzoate (EB) on either Day 9 or Day 14 of embryonic life. Birds were castrated at the age of 4 days to avoid the confounding effects of postnatal gonadal hormones and were treated as adults with testosterone (T). Whereas EB-treatment demasculizined sexual behavior and cloacal gland growth of males when administered on Day 9, it was without effect on Day 14. This result confirms the presence of a "critical period" for sexual differentiation of behavior in embryonic life. However, the time course of sexual differentiation and the sensitivity to the demasculinizing actions of estrogens were not the same for different behavioral and morphological characteristics. Some dependent variables such as plasma levels of luteinizing hormone and crowing were still affected by the EB treatment on Day 14. These results show that the whole process of demasculinization is not retricted to the "critical period" ending on Day 12 of incubation. A second experiment was performed to determine if 5 beta-dihydrotestosterone (5 beta-DHT), a metabolite of testosterone, also exerts demasculinizing effects during embryonic life. A large dose of 5 beta-DHT (2 mg/egg) had no effects on behavior and morphology in males if administered on Day 9 of egg incubation. This suggests that 5 beta-DHT, which is a steroid devoid of behavioral effects in the adult bird, is also an inactive compound as far as sexual differentiation of the quail is concerned. The high 5 beta-reductase activity which was previously identified in the hypothalamus of the embryonic quail thus probably plays a protective role. By transforming testosterone into inactive nonaromatizable androgens, it prevents male embryos from being demasculinized by their endogenous testosterone acting through aromatization.  相似文献   

14.
The sociosexual behaviors of six stable male-female pairs of stumptailed monkeys were studied in half-hour pair tests. Their performance before and after castration of the males was compared. The effects of replacement therapy with sex steroids on male-female interaction were studied. Also the effects of new females as sexual partners were investigated. Castration caused a significant decrease in sexual behavior. Individual males could display ejaculatory behavior up to about 1 year postcastration. Dihydrotestosterone propionate (75 mg/week/male) alone or in combination with estradiol benzoate (0.9 or 3 mg/week/male) was not effective in restoring sexual behavior to precastration levels in the three castrated males tested. Replacement therapy with testosterone propionate (75 or 10 mg/week/male) was effective in restoring copulatory behavior in half of the castrated males. In some males the introduction of a new female caused an increase in sexual activity, usually when sexual activity with their familiar partner was low. This occurred both in the castration condition and in the steroid treatment period, suggesting, that low activity was caused by low "motivation" and not by the inability to perform.  相似文献   

15.
In this series of experiments the hormonal bases for male copulatory behavior in the musk shrew (Suncus murinus) were examined. Male musk shrews failed to show copulatory behavior after castration. Testosterone replacement fully reinstated sexual behavior. Males castrated at birth, and tested as adults after receiving testosterone implants, did not show male-typical sexual behavior. It appears that the gonads are essential for the regulation of male sexual behavior in this primitive mammal.  相似文献   

16.
The display of penile reflexes and copulatory behavior appears to reflect the activity of two different underlying neuronal system, both of which are modulated by systemic testosterone (T) concentration. To indirectly compare the two systems, the responsiveness to T of penile reflexes and copulatory behavior was examined. In the first experiment castrated spinal male rats were given penile reflex tests while receiving replacement T through Silastic capsule implants filled with T (50 mm T). After capsule removal the number of penile erections and flips declined within 24 hr and gradually decreased for 12 days. Subjects were then reimplanted with new 50-mm T capsules. The number of penile flips and erections increased within 6 and 12 hr. respectively. This is a much more rapid response rate to T than has been established for copulatory behavior. In the second experiment castrated spinal male rats were tested for penile reflexes with a 50-mm T capsule, which was then replaced with a 10-, 5-, or 2-mm T or an empty capsule. The number of penile reflexes declined in a dose-response fashion. In the third experiment, castrated sexually experienced male rats were tested for copulatory behavior with two 25-mm T capsules which were then replaced with a 10 or 2-mm T or an empty capsule. Only males with empty capsules had decrements in copulatory behavior, revealing that a low level of T can maintain virtually normal sexual behavior despite a marked decline in penile reflex activity. The neuronal system underlying penile reflexes (spinal neurons) is apparently much more responsive to changes in T concentrations than the neuronal system underlying motivational and appetitive aspects of copulatory behavior (brain neurons).  相似文献   

17.
Chronic exposure to stressors increases HPA axis activity and concomitantly reduces HPG axis activity. This antagonistic relationship between both these axes has been proposed to underlie the inhibition of reproductive function due to stress. Sexual behavior in males may be the most vulnerable aspect of male reproduction to acute and chronic stress and it has been suggested that alterations in sexual behavior during stress are due to the antagonistic relationship between testosterone and corticosteroids. However, only in a few studies has a correlation between the levels of testosterone and corticosterone, and sexual behavior been made. In this study, we evaluated the effects of different stressors, applied both acute and chronically, on masculine sexual behavior and whether or not these effects on sexual behavior are accompanied by changes in plasma levels of corticosterone and testosterone. Additionally, we evaluated the effect of testosterone treatment on the effects of stress on sexual behavior. Sexually experienced male rats were exposed to one of the following stressors: immobilization (IMB), electric foot shocks (EFS) or immersion in cold water (ICW). Sexual behavior and plasma levels of testosterone and corticosterone were assessed on days 1, 5, 10, 15, and 20 of stress. In a second experiment, males were castrated, treated with 3 different doses of testosterone propionate (TP) and exposed to ICW for 20 consecutive days. Sexual behavior was assessed on days 1, 5, 10, 15, and 20 and steroids were evaluated on day 20. Parameters of masculine sexual behavior were modified depending on the characteristics of each stressor. Mount, intromission and ejaculation latencies increased significantly, the number of mounts increased, and ejaculations decreased significantly in males exposed to EFS and to ICW but not in males exposed to IMB. Associated with these effects, testosterone decreased in the EFS and ICW groups on days 1, 15, and 20. However, corticosterone increased only in males exposed to ICW. In castrated males, TP treatment failed to block the effects of stress by ICW on sexual behavior and corticosterone. These results indicate that the effects of stress on sexual behavior depend on the characteristics of each stressor, and these effects, as well as the decrease in testosterone are not necessarily associated with the increase in corticosterone. The fact that testosterone treatment did not prevent the effects of stress on sexual behavior suggests that other mediators could be involved in the alterations of sexual behavior caused by stress.  相似文献   

18.
In the tammar wallaby,Macropus eugenii,the expression of male-type sexual behavior is apparently determined by the activating effects of testicular hormones in adulthood. The incidence of male-type copulatory behavior and sexual checking behavior was compared in intact (control) males, control females, testosterone-treated females, and three groups of males castrated either postnatally (24–26 days of age), prepubertally (14.5 months of age), or in adulthood. All three groups of castrated male wallabies showed a very low incidence of male sexual behavior in adult life, comparable to that shown by the untreated females. Adult female wallabies with 100-mg testosterone implants showed a high incidence of male sexual behavior which was indistinguishable from that shown by intact males. The results suggest that sex differences in male-type behavior in the tammar wallaby are due to short-term inductive effects of testosterone acting on a sexually indifferent brain. There is no evidence of any long-term organizational effects of testosterone acting in fetal or neonatal life on the neural pathways controlling male-type sex behavior in this marsupial mammal.  相似文献   

19.
In the current study, male quail were administered methamphetamine (3.0 or 5.6mg/kg IP) or saline once daily for 10 days and locomotor activity was assessed. Following a 31-day withdrawal period, sexual conditioning trials were conducted such that a conditioned stimulus (CS) was presented prior to a copulatory opportunity with a female quail. Male quail treated with methamphetamine (5.6mg/kg) showed a decrease in locomotor activity from Trial 1 to Trial 10 suggesting a potential tolerance effect. Following the 31-day withdrawal period, all male quail that received the CS paired with a copulatory opportunity showed enhanced approach to the CS, regardless of treatment history. Thus, chronic pre-exposure to methamphetamine did not alter sexual conditioning. In contrast, chronic pre-exposure to methamphetamine (3.0mg/kg) decreased the frequency of successful copulations suggesting that it impaired sexual performance. The findings suggest that methamphetamine may differentially affect the neural circuitry involved in motivational systems compared with those involved in consummatory aspects of sexual behavior. These effects may last long after drug cessation.  相似文献   

20.
Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号