首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer, and therefore PTK inhibitors are currently under intense investigation as potential drug candidates. PTK inhibitor screening data are, however, poorly comparable because of the different assay technologies used. Here we report a comparison of ELISA-based assays for screening epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitory compound libraries to study interassay variations. All assays were based on the same protocol, except for the source of EGFR-TK enzymes. In the first protocol, the enzyme was isolated from A431 cells without affinity purification. In the second protocol, commercial EGFR-TK (Sigma) isolated from A431 cells by affinity-purification was employed. In the third protocol, an enzyme preparation obtained from a recombinant (Baculovirus transfected Sf9 cells) expression system was used. All assays employed the synthetic peptide substrate poly-(Glu, Tyr)1:4 and an ELISA-based system to detect phosphorylated tyrosine residues by a monoclonal antibody. We observed significant differences in both the activity of the enzymes and in the EGFR-TK inhibitory effect of our reference compound PD153035. The differences were significant in case of A431 cell lysate compared to affinity purified EGFR-TKs derived from either A431cells or Baculovirus transfected Sf9 cells, whereas the latter two showed comparable results. Our data suggest that differences in terms of interassay variation are not related to the source of the enzyme but to its purity; changes in the mode of detection can markedly influence the reproducibility of results. In conclusion, normalization of the EGFR activity used for inhibitor screening and standardization of detection methods enable safe comparison of data.  相似文献   

2.
Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer, and therefore PTK inhibitors are currently under intense investigation as potential drug candidates. PTK inhibitor screening data are, however, poorly comparable because of the different assay technologies used. Here we report a comparison of ELISA-based assays for screening epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitory compound libraries to study interassay variations. All assays were based on the same protocol, except for the source of EGFR-TK enzymes. In the first protocol, the enzyme was isolated from A431 cells without affinity purification. In the second protocol, commercial EGFR-TK (Sigma) isolated from A431 cells by affinity-purification was employed. In the third protocol, an enzyme preparation obtained from a recombinant (Baculovirus transfected Sf9 cells) expression system was used. All assays employed the synthetic peptide substrate poly-(Glu,Tyr)l:4 and an ELISA-based system to detect phosphorylated tyrosine residues by a monoclonal antibody. We observed significant differences in both the activity of the enzymes and in the EGFR-TK inhibitory effect of our reference compound PD153035. The differences were significant in case of A431 cell lysate compared to affinity purified EGFR-TKs derived from either A431 cells or Baculovirus transfected Sf9 cells, whereas the latter two showed comparable results. Our data suggest that differences in terms of interassay variation are not related to the source of the enzyme but to its purity; changes in the mode of detection can markedly influence the reproducibility of results. In conclusion, normalization of the EGFR activity used for inhibitor screening and standardization of detection methods enable safe comparison of data.  相似文献   

3.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

4.
Biological responses to epidermal growth factor (EGF) depend on the ligand-stimulated protein tyrosine kinase activity of its receptor. To further characterize the enzymatic activity of the EGF receptor, the baculovirus expression system was used to express the cytoplasmic protein tyrosine kinase domain of the EGF receptor. Spodoptera frugiperda (Sf9) cells infected with recombinant baculovirus correctly expressed an active tyrosine kinase domain of the EGF receptor as demonstrated by 35S metabolic labeling, immunoblotting with anti-EGF receptor and anti-phosphotyrosine antibodies, and autophosphorylation analysis. The kinase domain (Mr 66,000) was purified to near homogeneity using a monoclonal anti-phosphotyrosine antibody column, providing 0.5 mg of kinase domain/liter of Sf9 cells (23% yield). The purified kinase domain exhibited a strong preference for Mn2+ compared to Mg2+. The specific activity of the kinase domain was low compared to purified, EGF-activated EGF receptor. However, the addition of sphingosine or ammonium sulfate greatly increased the activity of the kinase domain to equal or exceed the activity of ligand-activated holo EGF receptor. These results indicate that the addition of sphingosine or ammonium sulfate to the purified kinase domain can mimic the effect of EGF to induce a conformation of the holo EGF receptor which is optimal for tyrosine kinase activity. Deletion of the ligand binding domain, analogous to that which occurs in erb B, is not sufficient to fully activate the kinase, implying that EGF causes conformational changes additional to removal of an inhibitory constraint.  相似文献   

5.
Iressa (Gefitinib) is an orally active inhibitor of epidermal growth factor receptor tyrosine kinase (EGFR-TK) involved in cell signal transduction processes critical to proliferation, apoptosis, repair, and angiogenesis of cancer cells. [11C]Iressa was first designed and synthesized as a new potential positron emission tomography (PET) cancer imaging agent for EGFR-TK in 30-40% radiochemical yield with 4.0-6.0 Ci/micromol specific activity at end of bombardment (EOB).  相似文献   

6.
The tyrosine kinase activity of the epidermal growth factor receptor (EGFR-TK) was determined at varying poly-Glu6Ala3Tyr1 (GAT) or [Val5]-angiotensin II (AT) and constant ATP concentrations and vice versa. With GAT as substrate, double reciprocal plots intersected practically on the abscissa following EGFR-TK pre-activation with EGF, but below the abscissa without EGF pre-activation. The EGFR-TK inhibitors App(NH)p (5'-adenylyl-beta, gamma-imidodiphosphate) and ADP were competitive with ATP and noncompetitive with GAT. Four families of 1/v vs. 1/[ATP] plots, constructed at different fixed concentrations of ADP and a different constant concentration of GAT for each family, yielded Slope1/ATP replots which intersected to the left of the ordinate and below the abscissa. GAT and AT, as cosubstrates, were competitive with each other and noncompetitive with ATP; 1/v vs. 1/[GAT] or 1/[AT] plots were hyperbolic and reached horizontal asymptotes when v was expressed as the rate of common product formation. All data were subjected to computer best-fit analysis by a program written especially for this purpose. We conclude that (i) the EGFR-TK reaction follows a Sequential Bi-Bi Rapid Equilibrium Random mechanism, and (ii) EGF induces conformational changes in the EGFR-TK active center which lead to marked decreases in the apparent dissociation constants of both substrates of the kinase reaction and a concomitant increase in initial velocities and Vmax (apparent).  相似文献   

7.
8.
The protein tyrosine kinase ZAP-70, which mediates T-cell antigen receptor (TCR) signalling, contains three distinct functional modules, two tandemly arranged SH2 domains, a kinase domain and a linker region (interdomain B) that connects them. ZAP-70 enzymatic activation is strictly dependent on the binding, via its SH2 domains, to the triggered TCR and on tyrosine phosphorylation. Here we utilized recombinant ZAP-70 and carried out a mutational analysis to understand the structural requirements for its activation. We show that deletion of both SH2 domains corresponding to the first 254 residues moderately increases ZAP-70 enzymatic activity on an exogenous substrate in vitro, results in increased tyrosine phosphorylation and produces subtle conformational changes, as judged by altered SDS/PAGE migration. Mutation of Tyr292, 315 and 319 to Phe in the interdomain B region, which constitute the major phosphorylation sites both in vitro and in vivo, did not affect ZAP-70 enzymatic activity. Moreover, deletion analysis of the interdomain B region established residues 320-619 as a minimal region endowed with full kinase activity. We propose that binding of ZAP-70 to the TCR promotes, through conformational changes, its extensive phosphorylation on tyrosine. However, Tyr292, 315 and 319 do not affect ZAP-70 enzymatic activity and may influence ZAP-70 signalling only indirectly by mediating its association with intracellular transducers.  相似文献   

9.
Epidermal growth factor receptor tyrosine kinase (EGFR-TK) is an attractive target for cancer therapy. Despite a number of effective EGFR inhibitors that are constantly expanding and different methods being employed to obtain novel compounds, the search for newer EGFR inhibitors is still a major scientific challenge. In the present study, a molecular docking and molecular dynamics investigation has been carried out with an ensemble of EGFR-TK structures against a synthetically feasible library of curcumin analogs to discover potent EGFR inhibitors. To resolve protein flexibility issue we have utilized 5 EGFR wild type crystal structures during docking as this gives improved possibility of identifying an active compound as compared to using a single crystal structure. We then identified five curcumin analogs representing different scaffolds that can serve as lead molecules. Finally, the 5 ns molecular dynamics simulation shows that knoevenagel condensate of curcumin specifically C29 and C30 can be used as starting blocks for developing effective leads capable of inhibiting EGFR.  相似文献   

10.

Background

Gain-of-function mutations of tyrosine kinase FLT3 are frequently found in acute myeloid leukemia (AML). This has made FLT3 an important marker for disease diagnosis and a highly attractive target for therapeutic drug development. This study is intended to generate a sensitive substrate for assays of the FLT3 enzymatic activity.

Methods

We expressed in Escherichia coli cells a glutathione S-transferase (GST) fusion protein designated GST-FLT3S, which contains a peptide sequence derived from an autophosphorylation site of FLT3. The protein was used to analyze tyrosine kinase activity of baculovirus-expressed FLT3 and crude cell extracts of bone marrow cells from AML patients. It was also employed to perform FLT3 kinase assays for FLT3 inhibitor screening.

Results

GST-FLT3S in solution or on beads was strongly phosphorylated by recombinant proteins carrying the catalytic domain of wild type FLT3 and FLT3D835 mutants, with the latter exhibiting much higher activity and efficiency. GST-FLT3S was also able to detect elevated tyrosine kinase activity in bone marrow cell extracts from AML patients. A small-scale inhibitor screening led to identification of several potent inhibitors of wild type and mutant forms of FLT3.

Conclusions

GST-FLT3S is a sensitive protein substrate for FLT3 assays. It may find applications in diagnosis of diseases related to abnormal FLT3 activity and in inhibitor screening for drug development.  相似文献   

11.
This report describes the cloning and characterization of rat leukocyte common antigen-related protein (rLAR), a receptor-like protein tyrosine phosphatase (PTPase). The recombinant cytoplasmic PTPase domain was expressed at high levels in bacteria and purified to homogeneity. Kinetic properties of the PTPase were examined along with potential modulators of PTPase activity. Several sulfhydryl-directed reagents were effective inhibitors, and a surprising distinction between iodoacetate and iodoacetamide was observed. The latter compound was an extremely poor inhibitor when compared to iodoacetate, suggesting that iodoacetate may interact selectively with a positive charge at or near the active site of the enzyme. Site-directed mutants were made at 4 highly conserved cysteine residues found at positions 1434, 1522, 1723, and 1813 within the protein. The Cys-1522/Ser mutation resulted in a 99% loss of enzymatic activity of the pure protein. This observation is consistent with greater than 99% of the PTPase activity being found in the first domain of the PTPase and demonstrates the critical importance of this cysteine residue in catalysis. The recombinant C1522S mutant phosphatase could also be phosphorylated in vitro by protein kinase C and p43v-abl tyrosine kinase. When pure recombinant PTPase was mixed with 32P-labeled tyrosine substrate and then rapidly denatured, a 32P-labeled enzyme intermediate could be trapped and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The catalytically inactive C1522S mutant did not form the phosphoenzyme intermediate.  相似文献   

12.
13.
A series of substituted benzoylamino-2-[(4-benzyl)thio]-1,3,4-thiadiazoles has been discovered as potent Abl tyrosine kinase inhibitors. Molecular docking simulations on the Abl tyrosine kinase were conducted in order to rationalize the SAR of the synthesized inhibitors. The most active compound identified from the enzymatic screening (6a) showed interesting inhibitory activity on Imatinib-sensitive murine myeloid 3B clone and Bcr-Abl-independent Imatinib-resistant leukemia cells. Surprisingly, 6a was also proved to act as differentiating inducers in human promyelocytic leukemia cells (HL-60).  相似文献   

14.
Syk is a tyrosine kinase which is indispensable in immunoglobulin Fc receptor- and B cell receptor-mediated signal transduction in various immune cells. This pathway is important in the pathophysiology of allergy. In this study we established a quantitative nonradioactive kinase assay to identify inhibitors of Syk. We used recombinant GST-tagged Syk purified from baculovirus-infected insect cells. As a substrate, biotinylated peptide corresponding to the activation loop domain of Syk, whose tyrosine residues are autophosphorylated upon activation, was employed to screen both ATP- and substrate-competitive inhibitors. After the kinase reaction in solution phase, substrate was trapped on a streptavidin-coated plate, followed by detection of the phosphorylated tyrosine with europium-labeled anti-phosphotyrosine antibody. The kinase reaction in solution phase greatly enhanced phosphorylation of substrate compared to that of plate-coated substrate. High signal-to-background ratio and low data scattering were obtained in the optimized high-throughput screening (HTS) format. Further, several kinase inhibitors showed concentration-dependent inhibition of recombinant Syk kinase activity with almost the same efficacy for immunoprecipitated Syk from a human cell line. These data suggest that this assay is useful to screen Syk kinase inhibitors in HTS.  相似文献   

15.
We have investigated the role of serine 40 (Ser-40) in tyrosine hydroxylase (TH) catalysis of basal and activated enzymes by protein kinase A (PKA)-mediated phosphorylation. Wild type and mutant TH were transiently and stably expressed in AtT-20 cells, and the enzymatic activities of the recombinant enzymes were analyzed. The specific enzymatic activity of transiently expressed TH mutants Ser-40-->leucine or-->tyrosine (Leu-40m or Tyr-40m) was higher than that of the wild type enzyme or of other mutants in which Ser-8, -19, and -31 were replaced by leucine. The kinetic studies carried out with the stably expressed TH show that the Km for the cofactor 6-methyltetrahydropterine is lower and the Ki for dopamine is higher when the enzymatic hydroxylation is catalyzed by the Leu-40m or Tyr-40m than by the wild type enzyme. The kinetic parameters and the pH profile of the enzymatic hydroxylation catalyzed by the Leu-40m or Tyr-40m are similar to the enzyme activated by PKA-mediated phosphorylation. We suggest that Ser-40 in TH exerts an inhibitory influence on the enzymatic activity, and its replacement with another amino acid by site-directed mutagenesis or its modification by phosphorylation leads to a change in conformation with an increased enzymatic activity. The importance of Ser-40 in the activation of TH by PKA-mediated phosphorylation was investigated by comparing the activation of the wild type enzyme with that of Leu-40m or Tyr-40m. The findings that the enzymatic activity is increased by PKA-mediated phosphorylation of the wild type enzyme, but not of the Leu-40m or Tyr-40m, demonstrate that phosphorylation at Ser-40 is essential for activation of TH by PKA. The findings that addition of ATP plus cAMP to homogenates from transfected AtT-20 cells stimulates the recombinant wild type TH activity indicate that these cells contain endogenous cAMP-dependent protein kinase.  相似文献   

16.
Solid-phase ELISAs for the determination of EGF receptor (EGF-R) and pp60c-src tyrosine protein kinase activity are described. The methods were developed and optimized using purified recombinant EGF-R intracellular domain (ICD) and pp60c-src tyrosine protein kinases. A standardized assay that utilizes poly (GluNa-Tyr)4:1 as substrate and a monoclonal antiphosphotyrosine antibody for detection is described. Assay conditions for both enzymes were optimized with respect to substrate and ELISA plate-coating condition, divalent metal ion preferences, enzyme concentration, apparent kinetic constants for ATP, and reaction linearity. Following standardization, a number of reference tyrosine protein kinase inhibitors were tested in the ELISAs and compared to results obtained using solution-phase radioactive tyrosine protein kinase assays, which are based on the transfer of 32P from [gamma-32P]ATP to synthetic substrate. To enable a comprehensive comparison, IC50 values obtained in the ELISA were compared with values obtained in radioactive assays using both the holo-EGF-R and EGF-R ICD kinases. No substantial qualitative differences between these assays were seen. For many routine tyrosine protein kinase assays, semiquantitative or qualitative measurement of TPK activity is adequate. For such purposes, the ELISAs would be an attractive alternative to radioactive assays.  相似文献   

17.
The receptors for polypeptide growth factors and proteins coded by oncogenes of the src family are endowed with protein kinase activity and share the uncommon property of autophosphorylating at tyrosine residues. It is unclear whether the tyrosine kinase activity is also directed towards other targets of physiological significance. In this work, phosphotyrosine antibodies were used to detect, by Western blots and immunoprecipitation, proteins phosphorylated at tyrosine in fibroblasts either stimulated by growth factors (PDGF and EGF) or transformed by oncogene-coded tyrosine kinases. In stimulated cells the antibodies detected the autophosphorylated receptors, but only trace amounts of other proteins phosphorylated at tyrosine. In fibroblasts transformed by retroviral oncogenes (v-src, v-abl, v-fps or v-fes) proteins other than the corresponding oncogene-coded kinase, were found. A p70 was found to be heavily phosphorylated in fibroblasts transformed by v-src, v-fes and v-fps. A p130 and a p36 were found in cells transformed by v-src and v-abl. A unique p70 was phosphorylated in v-abl-transformed fibroblasts. These proteins were also phosphorylated in vitro in an immunocomplex kinase reaction. This reaction was blocked by the specific kinase inhibitors. These data strongly suggest that tyrosine kinases phosphorylate protein targets other than themselves. These targets are barely detectable in normal cells stimulated by growth factors, where the kinase activity is triggered rapidly and transiently. By contrast, a number of intracellular proteins phosphorylated at tyrosine accumulate in cells transformed by v-onc-coded kinases, endowed with constitutive and non-regulated enzymatic activity.  相似文献   

18.
Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML.  相似文献   

19.
Modulation of protein kinase FA /glycogen synthase kinase-3α (kinase FA /GSK-3α) by reversible tyrosine phosphorylation/dephosphorylation was investigated. In addition to genistein, other protein tyrosine kinase (PTK) inhibitors, such as tyrphostin A47 and B42, also could induce tyrosine dephosphorylation and inactivation of kinase FA /GSK-3α in A431 cells, and this process was found to be reversible. Pretreatment of the cells with 100 μM orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor, could diminish significantly the effects of PTK inhibitors on both enzyme activity and phosphotyrosine content of the kinase, suggesting that the PTK inhibitors induced tyrosine dephosphorylation/inactivation of this kinase is mediated by orthovanadate-sensitive PTP(s) in A431 cells. Moreover, the phosphotyrosine moiety of kinase FA /GSK-3α was found to be highly turned over in resting cells. Interestingly, we found that the less active, tyrosine-dephosphorylated form of kinase FA /GSK-3α immunoprecipitated from genistein-treated cells was able to reactivate partially with concomitant rephosphorylation of tyrosine residue in vitro. Taken together, these findings demonstrate that tyrosine phosphorylation and concomitant activation of kinase FA /GSK-3α can be carried out both in vitro and in vivo and an in vivo phosphatase activity may function in antagonism to PTK activation of kinase FA /GSK-3α. J. Cell. Physiol. 171:95–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号