共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent investigations of proprioreceptors in the walking systems of cats, insects and crustaceans have identified reflex pathways that regulate the timing of the transition from stance to swing, and control the magnitude of ongoing motoneuronal activity. An important finding in the cat is that during locomotor activity, the influence of feedback from the Golgi tendon organs in extensor muscles onto extensor motoneurons is reversed from inhibition to excitation. The excitatory action of tendon organs during stance ensures that stance is maintained while extensor muscles are loaded, and may regulate the magnitude of extensor activity according to the load carried by the leg. Afferents from primary and secondary spindles in extensor and flexor muscles have also been found to influence the timing of the locomotor rhythm in a functionally relevant manner. Recent studies indicate that reflex reversals and the regulation of timing by multiple proprioceptive systems are also features of walking systems in arthropods. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Syntrophin components of the dystrophin glycoprotein complex (DGC) feature multiple protein interaction domains that may act in molecular scaffolding, recruiting signaling proteins to membranes and the DGC. Drosophila Syntrophin-1 (Syn1) and Syntrophin-2 (Syn2) are counterparts of human α1/β1/β2-syntrophins and γ1/γ2-syntrophins, respectively. α1/β1/β2-syntrophins are well documented, while little is known about γ1/γ2-syntrophins. Here, we performed immunohistochemical analyses with a specific antibody to Syn2 and demonstrated predominant expression in the larval and adult central nervous system. To investigate the in vivo functions of Syn2, we have generated Drosophila Syn2 deficiency mutants. Although the Syn2 mutants exhibit no overt phenotype, the combination of Syn1 knockdown and Syn237 mutation dramatically shortened life span, synergistically reduced locomotion ability and synergistically enhanced overgrowth of neuromuscular junctions in N-ethylmaleimide sensitive factor 2 mutants. From these data we conclude that Syn1 and Syn2 are required for locomotion and are involved in regulation of synaptic morphology. In addition, the two syntrophins can at least partially compensate for each other's functions. 相似文献
12.
13.
14.
15.
16.
17.
Hiroaki Hobara Brian S. Baum Hyun-Joon Kwon Ross H. Miller Toru Ogata Yoon Hyuk Kim Jae Kun Shim 《Journal of biomechanics》2013
Carbon fiber running-specific prostheses (RSPs) have allowed individuals with lower extremity amputation (ILEA) to participate in running. It has been established that as running speed increases, leg stiffness (Kleg) remains constant while vertical stiffness (Kvert) increases in able-bodied runners. The Kvert further depends on a combination of the torsional stiffnesses of the joints (joint stiffness; Kjoint) and the touchdown joint angles. Thus, an increased understanding of spring-like leg function and stiffness regulation in ILEA runners using RSPs is expected to aid in prosthetic design and rehabilitation strategies. The aim of this study was to investigate stiffness regulation to various overground running speeds in ILEA wearing RSPs. Eight ILEA performed overground running at a range of running speeds. Kleg, Kvert and Kjoint were calculated from kinetic and kinematic data in both the intact and prosthetic limbs. Kleg and Kvert in both the limbs remained constant when running speed increased, while intact limbs in ILEA running with RSPs have a higher Kleg and Kvert than residual limbs. There were no significant differences in Kankle, Kknee and touchdown knee angle between the legs at all running speeds. Hip joints in both the legs did not demonstrate spring-like function; however, distinct impact peaks were observed only in the intact leg hip extension moment at the early stance phase, indicating that differences in Kvert between limbs in ILEA are due to attenuating shock with the hip joint. Therefore, these results suggest that ILEA using RSPs has a different stiffness regulation between the intact and prosthetic limbs during running. 相似文献
18.
19.
20.