首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crossing over in the left arm of chromosome 2 (2L) was studied in successive broods of Drosophila melanogaster females carrying intact chromosomes (+/+), inversion Muller-5 in the X chromosome (M-5/+), and insertion of the Y-chromosome material into region 34A (Is(2L)/+). The regions net-dp, dp-b, b-pr and pr-cn were examined in 14 two-day-old broods of females +/+ and M-5/+ and in 10 broods of females Is(2L)/+. In all lines, the highest level of crossing over was in the first three broods (eggs laid during the first 6 days of oviposition) and the lowest level in the broods 7-8 (eggs laid at days 14-16). A high rate of crossing over in the first broods of females +/+ and M-5/+ was due to an increment of exchanges in the proximal euchromatin regions (b-pr and pr-cn) and to an increase in the number of tetrads with double exchanges. These changes are similar to a pattern of the interchromosomal effect on crossing over (IEC) in structurally normal chromosomes. In Is(2L)/+ females, a high level of crossing over was due to extensive exchanges in the interstitial regions net-dp and dp and an increase in the number of tetrads with single exchanges. These changes resembled the IEC in rearranged chromosomes (in this case, in chromosomes bearing an insertion). Thus, the age changes of crossing over are similar to the consequences of the presence or absence of IEC. Age changes in crossing over in a chromosome depended both on the local rearrangements in this chromosome (the local effect on crossing over, LEC) and on rearrangements in nonhomologous chromosomes (IEC). In the first broods, both LEC and IEC decreased with an increase in the level of crossing over. In subsequent broods, the reduced level of crossing over was accompanied by an increase in both LEC and IEC. This suggests that the mechanisms responsible for the age changes in crossing over and IEC may have common steps. The contact model of crossing over may explain the similarity between the age changes in crossing-over and IEC. It is suggested that both phenomena result from delayed determination of crossing over in a meiotic cell. This may occur due to the retarded formation of the local contacts in one of the homologous chromosome pairs or because a higher number of local contacts is required to trigger crossing over in a meiotic cell (of early age).  相似文献   

2.
B F Chadov 《Genetika》1999,35(5):592-599
Three phenomena have been examined: (1) independence of the segregation of structurally normal homologues from the position of crossover exchange relative to the centromere; (2) independence of chromosomal rearrangement ability to disturb disjunction from its position on chromosome; and (3) dependent, predominantly distal position of crossover exchanges in nondisjunction chromosomes. All three phenomena are explained in terms of the contact model of crossing over. According to the model, disjunction of the homologues is provided by a series of local contacts between them. The maximal number of contacts per arm is constant and is determined by the size of the absolute interference zone. The co-orientating influence of the contact decreases with the movement of its site away from the centromeric region responsible for the co-orientation. The role of the contact consists of bringing the centromeric regions of the homologues together. Co-orientation success does not depend on the presence or absence of a crossover exchange at the site of the contact. The nondisjunction chromosomes are selected with regard to the absence of proximal (or close to proximal) contacts. Hence, the exchanges formed on the basis of these contacts, are co-orientation-associated. In the disjunction chromosomes, the entire set of contacts is present. Any of these can be the first to develop and generate a crossover exchange. Because of this, exchanges in the disjunction chromosomes do not demonstrate association with the co-orientation. According to the model, the distortion of the previous contact disturbs (retards or prevents) the formation of the next contact. Hence, distortion of the contact formation in the site of rearrangement, irrespective to its location, would negatively affect the formation of the contact in the proximal region, and would promote nondisjunction.  相似文献   

3.
Previous studies of reversed acrocentric compound-X chromosomes suggested peculiar influences of heterochromatin on both the synthesis and meiotic behavior of such compunds. It seemed, with respect to synthesis, that the long arm of the Y chromosome on an X.Y(L) chromosome was necessary in order for the heterochromatic exchange giving rise to reversed acrocentrics to occur, even though Y(L) itself did not participate in the compound-generating event. With respect to behavior, the resulting compounds appeared, presumably as a consequence of their singular generation, to contain an interstitial heterochromatic region that caused the distribution of exchanges between the elements of the compound to be abnormal (many zero and two-exchange tetrads with few, if any, single-exchange tetrads). Removing the intersititial heterochromatin (or, curiously, appending Y(L) as a second arm of the compound) eliminated the recombinational anomalies and resulted in typical tetrad distributions.--We provide evidence that these peculiarities, while presumably real, were likely the consequence of a special X.Y(L) chromosome that was used to synthesize the reversed acrocentrics examined in the early studies and are not general properties of either reversed acrocentric compounds or of interstitial heterochromatin. However, we show that specific heterochromatic regions do, in fact, profoundly influence the behavior of (apparently all) reversed acrocentric compound-X chromosomes. In particular, we demonstrate that specific portions of the Y chromosome and of the basal X-chromosome heterochromatin, when present as homologs for reversed acrocentric compounds, markedly and coordinately increase both the frequency of exchange between the elements of the compound and the fertility (egg production) of compound-bearing females. It is, we suppose, some aspect of this heterochromatic effect, produced by the special X.Y(L) chromosome, that caused the earlier-analyzed compounds to exhibit the observed anomalies.  相似文献   

4.
The exchange behavior of non-attached, whole arm, X chromosome inversions was reexamined using nondisjunction in XXY females as an indirect measure of the frequency of nonexchange tetrads. Crossing over is quite normal in these inversion heterozygotes and is independent of the arrangement of the basal heterochromatin.  相似文献   

5.
Gene conversions and crossing over were analyzed along 10 intervals in a 405-kb region comprising nearly all of the left arm of chromosome VII in Saccharomyces cerevisiae. Crossover interference was detected in all intervals as measured by a reduced number of nonparental ditypes. We have evaluated interference between crossovers in adjacent intervals by methods that retain the information contained in tetrads as opposed to single segregants. Interference was seen between intervals when the distance in the region adjacent to a crossover was < approximately 35 cM (90 kb). At the met13 locus, which exhibits approximately 9% gene conversions, those gene conversions accompanied by crossing over exerted interference in exchanges in an adjacent interval, whereas met13 gene conversions without an accompanying exchange did not show interference. The pattern of exchanges along this chromosome arm can be represented by a counting model in which there are three nonexchange events between adjacent exchanges; however, maximum-likelihood analysis suggests that approximately 8-12% of the crossovers on chromosome VII arise by a separate, noninterfering mechanism.  相似文献   

6.
Chang CC  Kikudome GY 《Genetics》1974,77(1):45-54
Enhancement of recombination by B chromosomes is influenced by the kind of heterochromatic knob present in or near the tested region of the A chromosomes. In homomorphic chromosome 9 bivalents of Ks/Ks constitution, double exchanges were increased at the expense of singles, but in the K*/Ks heteromorphs there was a gain in both single and double exchanges at the expense of no-exchange tetrads. Modification of the B chromosome enhancement in different knob compounds was observed only in the megasporocytes.—Different frequencies of recombination are found in plants with odd and even numbers of B chromosomes; this effect is especially striking in the megasporocytes. The modification in recombination produced by an odd or even number of B chromosomes is a function of the interaction of a particular region and the knob constitution. Odd numbers of B chromosomes were more effective than even numbers in causing increased recombination.—It is concluded that heterochromatic knobs and the essentially heterochromatic supernumeraries may interact in the process of crossing over, with the level of recombination determined in part by knob constitution.  相似文献   

7.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

8.
Paul Szauter 《Genetics》1984,106(1):45-71
The frequency of crossing over per unit of physical distance varies systematically along the chromosomes of Drosophila melanogaster . The regional distribution of crossovers in a series of X chromosomes of the same genetic constitution, but having different sequences, was compared in the presence and absence of normal genetically mediated regional constraints on exchange. Recombination was examined in Drosophila melanogaster females homozygous for either normal sequence X chromosomes or any of a series of X chromosome inversions. Autosomally, these females were either (1) wild type, (2) homozygous for one of several recombination-defective meiotic mutations that attenuate the normal regional constraints on exchange or (3) heterozygous for the multiply inverted chromosome TM2. The results show that the centromere, the telomeres, the heterochromatin and the euchromatic-heterochromatic junction do not serve as elements that respond to genic determinants of the regional distribution of exchanges. Instead, the results suggest that there are several elements sparsely distributed in the X chromosome euchromatin. Together with the controlling system affected by recombination-defective meiotic mutations, these elements specify the regional distribution of exchanges. The results also demonstrate that the alteration in the distribution of crossovers caused by inversion heterozygosity (the interchromosomal effect) results from the response of a normal controlling system to an overall increase in the frequency of crossing over, rather than from a disruption of the system of regional constraints on exchange that is disrupted by meiotic mutations. The mechanisms by which regional constraints on exchange might be established are discussed, as is the possible evolutionary significance of this system.  相似文献   

9.
L. Sandler  Paul Szauter 《Genetics》1978,90(4):699-712
Crossing over was measured on the normally achiasmate fourth chromosome in females homozygous for one of our different recombination-defective meiotic mutants. Under the influence of those meiotic mutants that affect the major chromosomes by altering the spatial distribution of exchanges, meiotic fourth-chromosome recombinants were recovered irrespective of whether or not the meiotic mutant decreases crossing over on the other chromosomes. No crossing over, on the other hand, was detected on chromosome 4 in either wild type or in the presence of a meiotic mutant that decreases the frequency, but does not affect the spatial distribution, of exchange on the major chromosomes. It is concluded from these observations that (a) in wild type there are regional constraints on exchange that can be attenuated or eliminated by the defects caused by recombination-defective meiotic mutants; [b] these very constraints account for the absence of recombination on chromosome 4 in wild type; and [c] despite being normally achiasmate, chromosome 4 responds to recombination-defective meiotic mutants in the same way as do the other chromosomes.  相似文献   

10.
R Frankham 《Génome》1990,33(3):340-347
For X-Y exchange to be of importance in the coevolution of X and Y rDNA, there must be a mechanism to maintain cytologically normal X chromosomes in the face of continual infusions of X.YL chromosomes produced by X-Y exchanges. Replicated populations were founded with different frequencies of isogenic X and X.YL chromosomes. The X.YL chromosome declined in frequency over time in all lines. Relative fitnesses, estimated from chromosome frequency trajectories, were 0.40, 1.01, and 1.0 for X.YL/X.YL, X.YL/X, and X/X females and 0.75 and 1.0 for X.YL/Y and X/Y males, respectively. The equilibrium frequency for the X.YL chromosome due to the balance between X-Y exchange and selection was predicted to be 4-16 x 10(-4). The results strengthen the evidence for the involvement of X-Y exchange in the coevolution of X and Y rDNA arrays. Conditions for the evolution of reproductive isolation by sex-chromosome translocation are much less probable than previously supposed since the X.YL translocation chromosome is at a selective disadvantage to cytologically normal X chromosomes. Additional heterochromatin was not neutral but was only deleterious beyond a threshold, as one dose of the heterochromatic XL arm did not reduce female reproductive fitness, but two doses did.  相似文献   

11.
The amount and form of natural genetic variation for recombination were studied in six lines for which second chromosomes were extracted from a natural population of Drosophila melanogaster. Multiply marked second, X and third chromosomes were used to score recombination. Recombination in the second chromosomes varied in both amount and distribution. These second chromosomes caused variation in the amount and distribution of crossing over in the X chromosome and also caused variation in the amount, but not the distribution, of crossing over in the third chromosome. The total amount of crossing over on a chromosome varied by 12-14%. One small region varied twofold; other regions varied by 16-38%. Lines with less crossing over on one chromosome generally had less crossing over on other chromosomes, the opposite of the standard interchromosomal effect. These results show that modifiers of recombination can affect more than one chromosome, and that the variation exists for fine-scale response to selection on recombination.  相似文献   

12.
Portin P  Rantanen M 《Genetica》2000,108(1):87-90
Analysis of the interchromosomal effects of In(2L+2R)Cy, In(3L+3R)LVMand their joint effect on the frequencies of single and double crossovers in the cv-v-fregion of the X chromosome as well as interference showed that both inversions, occurring separately, increased the frequency of single as well as double crossovers and the coefficient of coincidence. However, when the inversions occurred together the frequencies of single crossovers no longer increased, but the frequency of double crossovers, as well as the coefficient of coincidence did increase. These results indicate firstly that the interchromosomal effects influence some precondition of exchange, but that this precondition is not an occurrence of double strand DNA breaks. Thus, the occurrence of double strand DNA breaks is not the sole condition for crossing over in Drosophila melanogaster.  相似文献   

13.
Podemski L  Ferrer C  Locke J 《Chromosoma》2001,110(4):305-312
Inversions of genetic segments during the evolution of Drosophila are well documented in the X chromosome and most autosomes, but little attention has been paid to chromosome 4, the smallest autosome or "dot chromosome" present in many Drosophila species. From our previous mapping we have defined probes that mark proximal, intermediate, and distal locations of chromosome 4 in D. melanogaster. In situ hybridizations on salivary gland polytene chromosomes with these probes show that the whole right arm, including genes within cytological region 101EF-102F, is inverted relative to D. simulans. We also used these probes to determine the orientation of the arm of the dot chromosome in nine species of Drosophila, including eight from the melanogaster subfamily. To account for the observed whole arm inversions of chromosome 4 in five of the nine species examined, we propose that three inversion events have occurred during the evolution of these species. These whole arm inversions may explain some of the unusual features of this chromosome.  相似文献   

14.
Vieira CP  Coelho PA  Vieira J 《Genetics》2003,164(4):1459-1469
In Drosophila there is limited evidence on the nature of evolutionary forces affecting chromosomal arrangements other than inversions. The study of the X/4 fusion polymorphism of Drosophila americana is thus of interest. Polymorphism patterns at the paralytic (para) gene, located at the base of the X chromosome, suggest that there is suppressed crossing over in this region between fusion and nonfusion chromosomes but not within fusion and nonfusion chromosomes. These data are thus compatible with previous claims that within fusion chromosomes the amino acid clines found at fused1 (also located at the base of the X chromosome) are likely maintained by local selection. The para data set also suggests a young age of the X/4 fusion. Polymorphism data on para and elav (located at the middle region of the X chromosome) suggest that there is no population structure other than that caused by the X/4 fusion itself. These findings are therefore compatible with previous claims that selection maintains the strong association observed between the methionine/threonine variants at fused1 and the status of the X chromosome as fused or unfused to the fourth chromosome.  相似文献   

15.
A cytogenetic analysis of male crossing over in Drosophila ananassae revealed that cytological exchanges resulted in genetic crossing over, and that chiasma frequency and the genetic recombination correlated positively in chromosomes 2 and 3. Furthermore, the frequency of chromosome breakages correlated positively with chiasma frequency. Paracentric inversion heterozygosity had no detectable influence on the chromosome pairing or exchange events within the inversion loop at meiosis. Scoring of the chiasma demonstrated that males homozygous for the previously mapped enhancers of male crossing over had low frequencies of chiasmata, whereas higher frequencies of chiasmata were observed in males heterozygous for enhancers. The results presented here indicate that the genetic factors controlling male crossing over are involved in the origin of chromosome breakages and in exchange events.  相似文献   

16.
A. M. Segall  J. R. Roth 《Genetics》1994,136(1):27-39
In standard bacterial recombination assays, a linear fragment of DNA is transferred to a recipient cell and, at most, a single selected recombinant type is recovered from each merozygote. This contrasts with fungal systems, for which tetrads allow recovery of all meiotic products, including both ultimate recombinant products of an apparent single act of recombination. We have developed a bacterial recombination system in which two recombining sequences are placed in inverse order at widely separated sites in the circular chromosome of Salmonella typhimurium. Recombination can reassort markers between these repeated sequences (double recombination and apparent gene conversion), or can exchange flanking sequences, leading to inversion of the chromosome segment between the recombining sequences. Since two recombinant products remain in the chromosome of a recombinant with an inversion, one can, in principle, approach the capability of tetrad analysis. Using this system, the following observations have been made. (a) When long sequences (40 kb) recombine, conversion frequently accompanies exchange of flanking sequences. (b) When short sequences (5 kb) recombine, conversion rarely accompanies exchange of flanks. (c) Both recA and recB mutations eliminate inversion formation. (d) The frequency of exchanges between short repeats is more sensitive to the distance separating the recombining sequences in the chromosome. The results are presented with the assumption that inversions occur by simple interaction of two sequences in the same circular chromosome. In an appendix we discuss mechanistically more complex possibilities, some of which could also apply to standard fungal systems.  相似文献   

17.
18.
Dvorák J  Chen KC 《Genetics》1984,106(2):325-333
Metaphase I (MI) pairing of homologous chromosomes in wheat intercultivar hybrids (heterohomologous chromosomes) is usually reduced relative to that within the inbred parental cultivars (euhomologous chromosomes). It was proposed elsewhere that this phenomenon is caused by polymorphism in nucleotide sequences (nonstructural chromosome variation) among wheat cultivars. The distribution of this polymorphism along chromosome arm 6Bp (=6BS) of cultivars Chinese Spring and Cheyenne was investigated. A population of potentially recombinant chromosomes derived from crossing over between telosome 6Bp of Chinese Spring and Cheyenne chromosome 6B was developed in the isogenic background of Chinese Spring. The approximate length of the Chinese Spring segment present in each of these chromosomes was assessed by determining for each chromosome the interval in which crossing over occurred (utilizing the rRNA gene region, a distal C-band and the gliadin gene region as markers). The MI pairing frequencies of these chromosomes (only the complete chromosomes were used) with the normal Chinese Spring telosome 6Bp were determined. These were directly proportional to the length of the euhomologous segment. The longer the incorporated euhomologous segment the better was the MI pairing. This provided evidence that the heterohomologous chromosomes are differentiated from each other in numerous sites distributed throughout the arm.—The comparison of the physical map of arm 6Bp with the linkage map showed a remarkable distortion of the linkage map; no crossing over was detected in the proximal 68% of the arm. A population of 49 recombinant chromosomes was assayed for recombination within the rRNA gene region, but none was detected. No new length variants of the nontranscribed spacer separating the 18S and 26S rRNA genes were detected either.  相似文献   

19.
The diploid chromosome number of the cotton boll weevil, Anthonomus grandis Boheman, is 44. Both C‐ and N‐banding techniques of mitotic cells demonstrated constitutive heterochromatin in the p arm of the eight largest chromosomes, the p arm of the X chromosome, and the centromeric region of autosomal groups A–D. Neither the y nor the group E autosomes appeared to contain constitutive heterochromatin. Supernumerary chromosomes were not found in the boll weevil. Restriction endonuclease banding of primary spermatocytes revealed a rod‐shaped Xy tetrad in which the X and y were terminally associated. The p arm of the large, submetacentric X was C‐band positive. While two of the autosomal tetrads were typically ring‐shaped in primary spermatocytes, the remaining 19 autosomal tetrads were rod‐shaped. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
P. Portin  M. Rantanen 《Genetica》1990,82(3):203-207
The second chromosome inversion In (2L+2R) Cy in a heterozygous condition was studied for its effect on frequency and interference of crossing over in three different regions of the X chromosome of Drosophila melanogaster. A significant increase in crossing over frequency was observed in the proximal and distal regioins of the X chromosome while in the middle of the chromosome crossing over frequency remained unaltered. The effect on interference remained unaltered at both ends of the X chromosome while a significant decrease was observed in the middle of the chromosome. These results suggest that the interchromosomal effect on crossing over affects the preconditions of exchange differently in different regions of the X chromosome, and possibly the duration of chromosome pairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号