首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations.  相似文献   

2.
Pinus radiata has a history of population bottlenecks and is currently restricted to five relatively small populations, three in mainland California, and two on islands off the coast of Baja California. Using highly polymorphic microsatellite markers and a newly developed statistical approach, we were able to estimate individual inbreeding coefficients and can thus analyse the mating system with high resolution. We find a bimodal distribution of inbreeding coefficients: most individuals result from selfing whereas few (in the mainland populations) to a modest number (in the island populations) are likely selfed. In most other pine species and presumably in the ancestral P. radiata population, occurrence of mature selfed individuals would be impossible because of the high genetic load. We therefore conclude that inbreeding depression has been purged in P. radiata and that the mating system has changed as a consequence.  相似文献   

3.
Inbreeding is common in small and threatened populations and often has a negative effect on individual fitness and genetic diversity. Thus, inbreeding can be an important factor affecting the persistence of small populations. In this study, we investigated the effects of inbreeding on fitness in a small, wild population of house sparrows (Passer domesticus) on the island of Aldra, Norway. The population was founded in 1998 by four individuals (one female and three males). After the founder event, the adult population rapidly increased to about 30 individuals in 2001. At the same time, the mean inbreeding coefficient among adults increased from 0 to 0.04 by 2001 and thereafter fluctuated between 0.06 and 0.10, indicating a highly inbred population. We found a negative effect of inbreeding on lifetime reproductive success, which seemed to be mainly due to an effect of inbreeding on annual reproductive success. This resulted in selection against inbred females. However, the negative effect of inbreeding was less strong in males, suggesting that selection against inbred individuals is at least partly sex specific. To examine whether individuals avoided breeding with close relatives, we compared observed inbreeding and kinship coefficients in the population with those obtained from simulations of random mating. We found no significant differences between the two, indicating weak or absent inbreeding avoidance. We conclude that there was inbreeding depression in our population. Despite this, birds did not seem to actively avoid mating with close relatives, perhaps as a consequence of constraints on mating possibilities in such a small population.  相似文献   

4.
Pollen movements and mating patterns are key features that influence population genetic structure. When gene flow is low, small populations are prone to increased genetic drift and inbreeding, but naturally disjunct species may have features that reduce inbreeding and contribute to their persistence despite genetic isolation. Using microsatellite loci, we investigated outcrossing levels, family mating parameters, pollen dispersal, and spatial genetic structure in three populations of Hakea oldfieldii, a fire‐sensitive shrub with naturally disjunct, isolated populations prone to reduction in size and extinction following fires. We mapped and genotyped a sample of 102 plants from a large population, and all plants from two smaller populations (28 and 20 individuals), and genotyped 158–210 progeny from each population. We found high outcrossing despite the possibility of geitonogamous pollination, small amounts of biparental inbreeding, a limited number of successful pollen parents within populations, and significant correlated paternity. The number of pollen parents for each seed parent was moderate. There was low but significant spatial genetic structure up to 10 m around plants, but the majority of successful pollen came from outside this area including substantial proportions from distant plants within populations. Seed production varied among seven populations investigated but was not correlated with census population size. We suggest there may be a mechanism to prevent self‐pollination in H. oldfieldii and that high outcrossing and pollen dispersal within populations would promote genetic diversity among the relatively small amount of seed stored in the canopy. These features of the mating system would contribute to the persistence of genetically isolated populations prone to fluctuations in size.  相似文献   

5.
The muskox Ovibos moschatus (Zimmerman 1780) is a specialised arctic mammal with a highly fragmented circumpolar distribution, with native populations in Canada and east Greenland and introduced populations in west Greenland, Alaska, Siberia and Eurasia. In 1971, five O. moschatus individuals from an introduced population in Norway migrated to Sweden. After a peak population of 36 individuals in the mid-1980s, the Swedish population now numbers seven individuals, making it vulnerable to both demographic and genetic stochasticity (i.e. inbreeding). Here, we analyse genetic variation among native and introduced populations of O. moschatus to evaluate the genetic effect of sequential founder events in this species. Our results show that genetic variation among native and introduced O. moschatus populations do not conform entirely to the expectations from sequential founder events, most likely because of random processes associated with introduction. In the Swedish population, a calf resulting from the mating of a wild cow and a captive Greenlandic bull contributes significantly to the current genetic variation. Thus, even a single outbreeding event may, at least momentarily, increase the genetic variation and potentially prevent inbreeding depression. Our results should aid the long-term preservation of O. moschatus in Sweden and Europe.  相似文献   

6.
Habitat destruction and fragmentation are increasing globally, forcing surviving species into small, isolated populations. Isolated populations typically experience heightened inbreeding risk and associated inbreeding depression and population decline; although individuals in these populations may mitigate these risks through inbreeding avoidance strategies. For koalas, as dietary specialists already under threat in the northern parts of their range, increased habitat fragmentation and associated inbreeding costs are of great conservation concern. Koalas are known to display passive inbreeding avoidance through sex‐biased dispersal, although population isolation will reduce dispersal pathways. We tested whether free‐ranging koalas display active inbreeding avoidance behaviours. We used VHF tracking data, parentage reconstruction, and veterinary examination results to test whether free‐ranging female koalas avoid mating with (a) more closely related males; and (b) males infected with sexually transmitted Chlamydia pecorum. We found no evidence that female koalas avoid mating with relatively more related available mates. In fact, as the relatedness of potential mates increases, so did inbreeding events. We also found no evidence that female koalas can avoid mating with males infected with C. pecorum. The absence of active inbreeding avoidance mechanisms in koalas is concerning from a conservation perspective, as small, isolated populations may be at even higher risk of inbreeding depression than expected. At risk koala populations may require urgent conservation interventions to augment gene flow and reduce inbreeding risks. Similarly, if koalas are not avoiding mating with individuals with chlamydial disease, populations may be at higher risk from disease than anticipated, further impacting population viability.  相似文献   

7.
The effects of variation in host reproductive systems on response to pathogens are not well understood. We inoculated individuals from outcrossing and inbreeding populations of North American Arabidopsis lyrata with Albugo candida (white blister rust) to test the effect of mating system and heterozygosity on disease response. We observed three host infection phenotypes, classified as fully resistant, partially resistant and fully susceptible. Overall, inbreeding populations had more susceptible and fewer partially resistant individuals than outcrossing populations, but the highest proportion of resistant individuals was found in two of the inbreeding populations. Mating system did not affect relative growth rate of inoculated plants, but there were strong effects of population and infection phenotype. We conclude that mating system per se does not determine the resistance of natural A. lyrata populations to infection by Albugo, but that the increased variability in responses among inbreeding populations may be due to reduced effective population size.  相似文献   

8.
We investigated the mating system and population genetic structure of the beetle, Coccotrypes dactyliperda, with life history characteristics that suggest the presence of a stable mixed‐mating system. We examined the genetic structure of seven populations in Israel and found significant departures from the Hardy–Weinberg equilibrium and an excess of homozygosity. Inbreeding coefficients were highly variable across populations, suggesting that low levels of outbreeding occur in nature. Experiments were conducted to determine whether the observed high inbreeding in these populations is the result of a reproductive assurance strategy. Females reared in the laboratory took longer to mate with males from the same population (inbreeding) than with males from a different population (outbreeding). These results suggest that females delayed inbreeding, and were more inclined to outbreed when possible. Thus inbreeding, which predominates in most populations, may be due to a shortage of mates for outbreeding rather than a preference for inbreeding. We conclude that C. dactyliperda has a mixed‐mating system that may be maintained by a reproductive assurance strategy.  相似文献   

9.
Meffert LM  Regan JL 《Genetica》2006,127(1-3):1-9
We compared the efficacy of artificial and natural selection processes in purging the genetic load of perpetually small populations. We subjected replicate lines of the housefly (Musca domestica L.), recently derived from the wild, to artificial selection for increased mating propensity (i.e., the proportion of male–female pairs initiating copulation within 30 min) in efforts to cull out the inbreeding depression effects of long-term small population size (as determined by a selection protocol for increased assortative mating). We also maintained parallel non-selection lines for assessing the spontaneous purge of genetic load due to inbreeding alone. We thus evaluated the fitness of artificially and ‘naturally’ purging populations held at census sizes of 40 individuals over the course of 18 generations. We found that the artificially selected lines had significant increases in mating propensity (up to 46% higher from the beginning of the protocol) followed by reversed selection responses back to the initial levels, resulting in non-significant heritabilities. Nevertheless, the ‘naturally’ selected lines had significantly lower fitness overall (a 28% reduction from the beginning of the protocol), although lower effective population sizes could have contributed to this effect. We conclude that artificial selection bolstered fitness, but only in the short-term, because the inadvertent fixation of extant genetic load later resulted in pleiotropic fitness declines. Still, the short-term advantage of the selection protocol likely contributed to the success of the speciation experiment since our recently-derived housefly populations are particularly vulnerable to inbreeding depression effects on mating behavior.  相似文献   

10.
Reintroductions of threatened species are increasingly common in conservation. The translocation of a small subset of individuals from a genetically diverse source population could potentially lead to substantial inbreeding depression due to the high genetic load of the parent population. We analysed 12 years of data from the reintroduced population of North Island robins Petroica longipes on Tiritiri Matangi Island, New Zealand, to determine the frequency of inbreeding and magnitude of inbreeding depression. The initial breeding population consisted of 12 females and 21 males, which came from a large mainland population of robins. The frequency of mating between relatives ( f >0; 39%, n =82 pairs) and close relatives ( f =0.25; 6.1%) and the average level of inbreeding ( f =0.027) were within the range reported for other small island populations of birds. The average level of inbreeding fluctuated from year to year depending on the frequency of close inbreeding (e.g. sib–sib pairs). We found evidence for inbreeding depression in juvenile survival, with survival probability estimated to decline from 31% among non-inbred birds ( f =0) to 11% in highly inbred juveniles ( f =0.25). The estimated number of lethal equivalents based on this relationship (4.14) was moderate compared with values reported for other island populations of passerines. Given that significant loss of fitness was only evident in highly inbred individuals, and such individuals were relatively rare once the population expanded above 30 pairs, we conclude that inbreeding depression should have little influence on this robin population. Although the future fitness consequences of any loss of genetic variation due to inbreeding are uncertain, the immediate impact of inbreeding depression is likely to be low in any reintroduced population that expands relatively quickly after establishment.  相似文献   

11.
Inbreeding is a major component of the mating system in populations of many plants and animals, particularly hermaphroditic species. In flowering plants, inbreeding can occur through self-pollination within flowers (autogamy), self-pollination between flowers on the same plant (geitonogamy), or cross-pollination between closely related individuals (biparental inbreeding). We performed a floral emasculation experiment in 10 populations of Aquilegia canadensis (Ranunculaceae) and used allozyme markers to estimate the relative contribution of each mode of inbreeding to the mating system. We also examined how these modes of inbreeding were influenced by aspects of population structure and floral morphology and display predicted to affect the mating system. All populations engaged in substantial inbreeding. On average, only 25% of seed was produced by outcrossing (range among populations = 9-37%), which correlated positively with both population size (r = +0.61) and density (r = +0.64). Inbreeding occurred through autogamy and biparental inbreeding, and the relative contribution of each was highly variable among populations. Estimates of geitonogamy were not significantly greater than zero in any population. We detected substantial biparental inbreeding (mean = 14% of seeds, range = 4-24%) by estimating apparent selfing in emasculated plants with no opportunity for true selfing. This mode of inbreeding correlated negatively with population size (r = -0.87) and positively with canopy cover (r = +0.90), suggesting that population characteristics that increase outcross pollen transfer reduce biparental inbreeding. Autogamy was the largest component of the mating system in all populations (mean = 58%, range = 37-84%) and, as expected, was lowest in populations with the most herkogamous flowers (r = -0.59). Although autogamy provides reproductive assurance in natural populations of A. canadensis, it discounts ovules from making superior outcrossed seed. Hence, high autogamy in these populations seems disadvantageous, and therefore it is difficult to explain the extensive variation in herkogamy observed both among and especially within populations.  相似文献   

12.
Understanding how the mating system varies with population size in plant populations is critical for understanding their genetic and demographic fates. We examined how the mating system, characterized by outcrossing rate, biparental inbreeding rate, and inbreeding coefficient, and genetic diversity varied with population size in natural populations of the biennial Sabatia angularis. We found a significant, positive relationship between outcrossing and population size. Selfing was as high as 40% in one small population but was only 7% in the largest population. Despite this pattern, observed heterozygosity did not vary with population size, and we suggest that selection against inbred individuals maintains observed heterozygosity in small populations. Consistent with this hypothesis, we found a trend of lower inbreeding coefficients in the maternal than progeny generation in all of the populations, and half of the populations exhibited significant excesses of adult heterozygosity. Moreover, genetic diversity was not related to population size and was similar across all populations examined. Our results suggest that the consequences of increased selfing for population fitness in S. angularis, a species that experiences significant inbreeding depression, will depend on the relative magnitude and consistency of inbreeding depression and the demographic cost of selection for outcrossed progeny in small populations.  相似文献   

13.
It is generally expected that small, isolated populations will suffer reduced fitness due to inbreeding, yet few studies have investigated the relation between population characteristics, inbreeding and fitness. Among Ontario populations of the short‐lived, perennial plant Aquilegia canadensis, large populations (N>90 flowering plants) outcross twice as frequently as small populations (N=30–40), and inbreeding depression is extremely strong. We tested the prediction that reproductive output, a major component of population fitness, should be positively associated with population size. Data from a survey of 33 populations located on small islands in the St. Lawrence River, Canada and 23 populations on adjacent mainland areas supported this prediction. Population size correlated positively with reproductive output, measured as the number of seedlings produced per plant in 1995 (average r=+0.39 pooled P=0.019), and the number of fruits per plant in 1997 (r=+0.30, P=0.056). We also tested the prediction that fitness should decline with increasing spatial isolation between populations by measuring the distance separating all island populations. However, reproductive output did not correlate with isolation in either year. We compared island and mainland populations to test the prediction that reproductive output should be lower for populations on small islands than those occurring in more continuous mainland habitat. In contrast to our predictions, island populations exhibited, if anything, higher reproductive output than mainland populations. We also found no support for the prediction that the positive association between population size and reproductive output should be stronger for presumably isolated populations on small islands than for those on adjacent mainland areas. While the mechanisms underlying the association between population size and fitness are impossible to identify with correlations alone, our results are consistent with the hypothesis that inbreeding can significantly reduce the fitness of natural populations.  相似文献   

14.
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average = 0.154 and max = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population.  相似文献   

15.
Human pressures have put many top predator populations at risk of extinction. Recent years have seen alarming declines in sharks worldwide, while their resilience remains poorly understood. Studying the ecology of small populations of marine predators is a priority to better understand their ability to withstand anthropogenic and environmental stressors. In the present study, we monitored a naturally small island population of 40 adult sicklefin lemon sharks in Moorea, French Polynesia over 5 years. We reconstructed the genetic relationships among individuals and determined the population’s mating system. The genetic network illustrates that all individuals, except one, are interconnected at least through one first order genetic relationship. While this species developed a clear inbreeding avoidance strategy involving dispersal and migration, the small population size, low number of breeders, and the fragmented environment characterizing these tropical islands, limits its complete effectiveness.  相似文献   

16.
Population genetic structure and intrapopulation levels of genetic variation have important implications for population dynamics and evolutionary processes. Habitat fragmentation is one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene flow between populations and will thus also affect genetic structure. We use a natural system of island and mainland populations of house sparrows along the coast of Norway to characterize the different population genetic properties of fragmented populations. We genotyped 636 individuals distributed across 14 populations at 15 microsatellite loci. The level of genetic differentiation was estimated using F‐statistics and specially designed Mantel tests were conducted to study the influence of population type (i.e. mainland or island) and geographic distance on the genetic population structure. Furthermore, the effects of population type, population size and latitude on the level of genetic variation within populations were examined. Our results suggest that genetic processes on islands and mainland differed in two important ways. First, the intrapopulation level of genetic variation tended to be lower and the occurrence of population bottlenecks more frequent on islands than the mainland. Second, although the general level of genetic differentiation was low to moderate, it was higher between island populations than between mainland populations. However, differentiation increased in mainland populations somewhat faster with geographical distance. These results suggest that population bottleneck events and genetic drift have been more important in shaping the genetic composition of island populations compared with populations on the mainland. Such knowledge is relevant for a better understanding of evolutionary processes and conservation of threatened populations.  相似文献   

17.
The degree to which individuals inbreed is a fundamental aspect of population biology shaped by both passive and active processes. Yet, the relative influences of random and non-random mating on the overall magnitude of inbreeding are not well characterized for many taxa. We quantified variation in inbreeding among qualitatively accessible and isolated populations of a sessile marine invertebrate (the colonial ascidian Lissoclinum verrilli) in which hermaphroditic colonies cast sperm into the water column for subsequent uptake and internal fertilization. We compared estimates of inbreeding to simulations predicting random mating within sites to evaluate if levels of inbreeding were (1) less than expected because of active attempts to limit inbreeding, (2) as predicted by genetic subdivision and passive inbreeding tolerance, or (3) greater than simulations due to active attempts to promote inbreeding via self-fertilization or a preference for related mates. We found evidence of restricted gene flow and significant differences in the genetic diversity of L. verrilli colonies among sites, indicating that on average colonies were weakly related in accessible locations, but their levels of relatedness matched that of first cousins or half-siblings on isolated substrates. Irrespective of population size, progeny arrays revealed variation in the magnitude of inbreeding across sites that tracked with the mean relatedness of conspecifics. Biparental reproduction was confirmed in most offspring (86%) and estimates of total inbreeding largely overlapped with simulations of random mating, suggesting that interpopulation variation in mother–offspring resemblance was primarily due to genetic subdivision and passive tolerance of related mates. Our results highlight the influence of demographic isolation on the genetic composition of populations, and support theory predicting that tolerance of biparental inbreeding, even when mates are closely related, may be favoured under a broad set of ecological and evolutionary conditions.  相似文献   

18.
The lek paradox asserts that strong directional selection via female choice should deplete additive genetic variation in fitness and consequently any benefit to females expressing the preference. Recently, we have provided a novel resolution to the paradox by showing that nonadditive genetic effects such as overdominance can be inherited from parent to offspring, and populations with females that express a mating preference for outbred males maintain higher genetic variation than populations with females that mate randomly. Here, we test our dynamic model using empirical data previously published from a small island population of song sparrows (Melospiza melodia). The model assumes that fitness and male trait expression display overdominance effects. The results demonstrate that female choice for outbred males mediated by directional selection on song repertoire size provides a heritable benefit to offspring through reduced inbreeding depression. Within the population, we estimate the heritability of the inbreeding coefficient to be 0.18 ± 0.08 (SD). Furthermore, we show that mate choice for outbred males increases fitness‐related genetic variation in the population by 12% and thereby reduces inbreeding depression by 1% per generation in typical years and upwards of 15% in severe years. Thus, mate choice may help to stave off population extinction in this and other small populations.  相似文献   

19.
Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small‐scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self‐recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects.  相似文献   

20.
How many generations ago did the common ancestor of all present-day individuals live, and how does inbreeding affect this estimate? The number of ancestors within family trees determines the timing of the most recent common ancestor of humanity. However, mating is often non-random and inbreeding is ubiquitous in natural populations. Rates of pedigree growth are found for multiple types of inbreeding. This data is then combined with models of global population structure to estimate biparental coalescence times. When pedigrees for regular systems of mating are constructed, the growth rates of inbred populations contain Fibonacci n-step constants. The timing of the most recent common ancestor depends on global population structure, the mean rate of pedigree growth, mean fitness, and current population size. Inbreeding reduces the number of ancestors in a pedigree, pushing back global common ancestry times. These results are consistent with the remarkable findings of previous studies: all humanity shares common ancestry in the recent past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号