首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of adenosine 3′,5′-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0·10?7 M and 1.5·10?6 M, respectively. The activity of adenylate cyclase in a 105 000 × g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5·10?6 M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

2.
Molecular hybridization between 3H-polyuridylic acid and unlabeled RNA prepared from unfertilized rabbit eggs and 10-h postfertilization stage rabbit embryos has been used to measure the amount and subcellular localization of adenylated maternal RNA. The results reported indicate that there is poly (A)-containing RNA (putative messenger RNA) in unfertilized rabbit eggs. The amount of poly (A) in the RNA in rabbit eggs does not increase immediately after fertilization and is located primarily in the ribosomal fraction of the cell. The rate of protein synthesis in fertilized eggs is insensitive to α-amanitin at concentrations which inhibit RNA synthesis. These results suggest that maternal mRNA makes an important contribution to protein synthesis in early stages of cleavage in the rabbit embryo.  相似文献   

3.
Fertilization of the eggs of the sea urchin Arbacia punctulata is followed by the phosphorylation of ribosomal protein S6. The increase in phosphorylation starts at the same time that protein synthesis begins to increase, and leads to the appearance of mono-, di-, and triphosphorylated S6 derivatives. Essentially all the S6 is phosphorylated by first cleavage. This phosphorylation requires the occurrence of both the normal Ca2+ transient and the consequent Na+H+ exchange. Protein synthesis can be partially activated by an increase in intracellular pH brought about by weak bases, but this neither causes S6 phosphorylation, nor the inactivation of the specific S6 phosphatase present in unfertilized Arbacia eggs.  相似文献   

4.
Methylxanthines (MX) inhibit cell division in sea urchin and clam eggs. This inhibitory effect is not mediated via cAMP. MX also inhibit respiration in marine eggs, at concentrations which inhibit cleavage. Studies showed that no changes occurred in ATP and ADP levels in the presence of inhibitory concentrations of MX, indicating an extra-mitochondrial site of action for the drug. Subsequent studies revealed decreased levels of NADP+ and NADPH, when eggs were incubated with inhibitory concentrations of MX, but no change in levels of NAD+ and NADH. MX did not affect the pentose phosphate shunt pathway and did not have any effect on the enzyme NAD+ -kinase. Further studies showed a marked inhibitory effect on the glutathione reductase activity of MX-treated eggs. Reduced glutathione (GSH) could reverse the cleavage inhibitory effect of MX. Moreover, diamide, a thiol-oxidizing agent specific for GSH in living cells, caused inhibition of cell division in sea urchin eggs. Diamide added to eggs containing mitotic apparatus (MA) could prevent cleavage by causing a dissolution of the formed MA. Both MX and diamide inhibit a Ca2+-activated ATPase in whole eggs. The enzyme can be reactivated by sulfhydryl reducing agents added in the assay mixture. In addition, diamide causes an inhibition of microtubule polymerization, reversible with dithioerythritol. All experimental evidence so far suggests that inhibition of mitosis in sea urchin eggs by MX is mediated by perturbations of the in vivo thiol-disulfide status of target systems, with a primary effect on glutathione levels.  相似文献   

5.
The level of adenosine 3',5'-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0 X 10(-7)M and 1.5 X 10(-6)M, respectively. The activity of adenylate cyclase in a 105 000 X g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5 X 10(-6)M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

6.
The activity of the pyruvate dehydrogenase complex in sea urchin eggs is localized in the crude mitochondrial fraction. The activity of the enzyme complex in the intact mitochondrial fraction of unfertilized eggs is too low to be estimated and is enhanced upon fertilization with a 5-min lag period. The activity of the enzyme complex in unfertilized eggs is enhanced by Ca2+at concentrations between 5 × 10?5 M and 10?3 M. The activity in fertilized eggs is blocked after incubation with 2 mM ATP, and the block of the activity is also released by Ca2+. The blockage of the enzyme complex activity is accompanied by phosphorylation of proteins, and release of the block by Ca2+ is concomitantly followed by the dephosphorylation of proteins in the mitochondrial fraction. The enzyme complex in unfertilized eggs will be assumed to be the one inhibited by phosphorylation. The enzyme complex will be activated upon fertilization as a consequence of the dephosphorylation, that is caused by the increase in intracellular concentration of Ca2+.  相似文献   

7.
Up to 60 sec after insemination, the content of arginine phosphate in sea urchin eggs remained constant at the same level as unfertilized eggs (0.76 μmole/106 eggs), and then began to increase, reaching a plateau (1.38 μmoles/106 eggs) at 180 sec after insemination, which was maintained until cleavage. During the first and the second cleavage, the content changed cyclically, falling abruptly by 15 to 25 % just before furrowing, and then returning to the initial level just after the onset of cleavage.  相似文献   

8.
Spermidine and spermine are found in unfertilized eggs of the sea urchin, Hemicentrotuspulcherrimus. Putrescine becomes detectable and concentrations of spermidine and spermine increase in the eggs upon fertilization. Then, concentrations of these polyamines decrease after respective peaks in polyamine concentrations. The peaks in the concentrations are found at 15 minutes post fertilization for putrescien, at 30 minutes for spermidine and at 30–40 minutes for spermine respectively. Levels of polyamines elevate again and reduce after the 2nd concentration peaks of respective compounds, and then the first cleavage of the eggs takes place. Cyclic change in each polyamine concentration is also observed after the first cleavage, and egg cleavage occurs at decreasing phase of polyamine concentrations.  相似文献   

9.
F Irvine  N J Pyne  M D Houslay 《FEBS letters》1986,208(2):455-459
Treatment of intact hepatocytes with the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) potentiated the ability of glucagon to increase intracellular cyclic AMP concentrations. This effect was dose-dependent upon TPA, exhibiting an EC50 of 0.39 ng/ml and such activation was observed at both saturating and sub-saturating concentrations of glucagon. However, this stimulatory effect of TPA was completely abolished by the presence of the cyclic AMP phosphodiesterase inhibitor 1-isobutyl-3-methylxanthine, when TPA now inhibited the glucagon-stimulated increase in intracellular cyclic AMP concentrations. It is suggested that, as well as inhibiting glucagon-stimulated adenylate cyclase activity, TPA also inhibits cyclic AMP phosphodiesterase activity in intact hepatocytes. Treatment of either hepatocyte homogenates or purified cyclic AMP phosphodiesterase with TPA failed to show any direct inhibitory effect of TPA on activity showing that TPA did not exert any direct inhibitory action on phosphodiesterase activity. However, homogenates made from hepatocytes that had been pre-treated with TPA did show a reduced cyclic AMP phosphodiesterase activity. It is suggested that TPA might inhibit cyclic AMP phosphodiesterase activity through phosphorylation by C-kinase.  相似文献   

10.
The mechanism of the activation of intracellular proteasomes at fertilization was measured in living sand dollar eggs using the membrane-impermeant fluorogenic substrate, succinyl-Phe-Leu-Arg-coumarylamido-4-methanesulfonic acid. When the substrate was microinjected into unfertilized eggs, the initial velocity of hydrolysis of the substrate (V0) was low. V0 measured 5 to 10 min after fertilization was five to nine times the prefertilization level and remained high throughout the first cell cycle. Hydrolysis of the substrate was inhibited by clasto-lactacystin beta-lactone, a specific inhibitor of the proteasome. There has been in vitro evidence that calcium may be involved in regulation of proteasome activity to either inhibit the increase in peptidase activity associated with PA 28 binding to the 20S proteasome or stimulate activity of the PA 700-proteasome complex. Since both intracellular free Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) increase after fertilization, hydrolysis of the proteasome substrate was measured under conditions in which [Ca2+]i and pHi were varied independently during activation. When the pHi of unfertilized eggs was elevated by exposure to 15 mM ammonium chloride in pH 9 seawater, V0 increased to a level comparable to that measured after fertilization. In contrast, [Ca2+]i elevation without pHi change, induced by calcium ionophore in sodium-free seawater, had no effect on V0 in the unfertilized egg. Moreover, when unfertilized eggs were microinjected with buffers modulating pHi, V0 increased in a pH-dependent manner. These results indicate that the pHi rise at fertilization is the necessary prerequisite for activation of the proteasome, an essential component in the regulation of the cell cycle.  相似文献   

11.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on Ca2+/calmodulin-dependent cyclic nucleotide (AMP) phosphodiesterase activity in rat liver cytosol was investigated. The addition of Ca2+ (50 µM) and calmodulin 160 U/ml in the enzyme reaction mixture caused a significant increase in cyclic AMP phosphodiesterase activity. This increase was inhibited by the presence of regucalcin (0.5-3.0 µM); the inhibitory effect was complete at 1.0 µM. Regucalcin (1.0 µM) did not have an appreciable effect on basal activity without Ca2+ and calmodulin. The inhibitory effect of regucalcin was still evident even at several fold higher concentrations of calmodulin (160–480 U/ml). However, regucalcin (1.0 µM) did not inhibit Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in the presence of 100 and 200 µM Ca2+ added. Meanwhile, Cd2 (25–100 µM)-induced decrease in Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity was not reversed by the presence of regucalcin (1.0 µM). The present results suggest that regucalcin can regulate Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity due to binding Ca2+ in liver cells.  相似文献   

12.
Summary There are species of hydrozoans, Eutonina victoria, Mitrocomella polydiademata, and Phialidium gregarium whose eggs contain calcium-specific photoproteins. These cytoplasmic photoproteins are synthesized during oogenesis. During the cleavage stages of embryogenesis they are distributed to all of the cells of the developing planula larva. The amount of photoprotein slowly declines during the development of the planula larva, and markedly declines when the planula undergoes metamorphosis to become a polyp.Oocytes, unfertilized eggs, and fertilized eggs prior to the first cleavage do not produce light when treated with KCl. The ability to respond to KCl appears about the time of first cleavage, and is correlated with the appearance of active membrane responses. Both the KCl response and the action potentials will occur in sodium-free sea water, and both are inhibited by calcium channel blockers. These and other experiments suggest that voltage sensitive calcium channels first become active at about the time of first cleavage. These channels also appear on the same schedule in both unfertilized eggs and in enucleated egg fragments, which have been artificially activated with A23187.Developing planulae produce few or no spontaneous light responses before gastrulation. Later the frequency and magnitude of spontaneous light production increases presumably due to an increasing frequency and magnitude of calcium transients. Both the natural trigger of metamorphosis (bacteria) and an artificial trigger (CsCl) cause a conspicuous series of calcium transients. When these transients are inhibited by calcium channel blockers, metamorphosis is also inhibited.  相似文献   

13.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

14.
We have assayed various materials for their ability to induce aster formation by microinjection into unfertilized eggs of Xenopus laevis. We have found that purified basal bodies from Chlamydomonas reinhardtii and Tetrahymena pyriformis induce the formation of asters and irregular cleavage furrows within 1 h after injection. Other microtubule structures such as flagella, flagellar axonemes, cilia, and brain microtubules are completely ineffective at inducing asters or cleavage furrows in unfertilized eggs. When known amounts of sonicated Tetrahymena and Chlamydomonas preparations are injected into unfertilized eggs, 50% of the injected eggs show a furrowing response at approximately 3 cell equvalents for Chlamydomonas and 0.1 cell equivalent for Tetrahymena. These results are close to those expected if basal bodies were the effective astral-inducing agent in these cells. Other materials effective at inducing asters in unfertilized eggs, such as crude brain nuclei, sperm, and a particulate fraction from brain known to induce parthenogenesis in eggs of Rana pipiens, probably contain centrioles as the effective agent. Our experiments provide the first functional assay to indicate that centrioles play an active role in aster initiation. None of the injected materials effective in unfertilized eggs produced any observable response in fully grown oocytes. Oocytes and eggs were found to have equal tubulin pools as judged by colchicine-binding activity. Therefore, the inability of oocytes to form asters cannot be due to a lack of an organizing center or to a lack of tubulin. Experiments in which D2O was found to stimulate aster-like fibrous areas in eggs but not oocytes suggest that the inability of oocytes to form asters may be due to an inability of tubulin in oocytes to assemble.  相似文献   

15.
Thymidylate synthase activity in sea urchin eggs increases just after fertilization and decreases 30 min later. Then, cyclic variation in the activity occurs in association with the cleavage cycle. Dihydrofolate reductase activity in fertilized eggs is almost the same as in unfertilized eggs and shows no marked change within 3 hr after fertilization. Aminopterin, an analogue of dihydrofolate, inhibits dihydrofolate reductase, and arrests cleavage. On incubation in sea water containing aminopterin (20-100μM) from the time of fertilization, the development of Clypeaster and Pseudocentrotus eggs was arrested at the 32–64 cell stage, and that of Anthocidaris eggs was arrested at the morula stage. Dihydrofolate (100μM) counteracts the inhibitory effect of aminopterin on egg cleavage. Thymidine at concentrations above 10μM also prevents inhibition by aminopterin. Other deoxyribonucleosides at concentrations of 10μM to 100μM do not affect inhibition of egg cleavage by aminopterin. Deoxyadenosine at concentrations above 5 mM inhibits egg cleavage, but other deoxyribonucleosides have no effect.  相似文献   

16.
The total adenylate cyclase activity in homogenates of eggs of the sea urchins Strongylocentrotus purpuratus and Lytechinus pictus was assayed in vitro and found to remain constant in eggs before and at intervals after fertilization. In S. purpuratus egg homogenates virtually all of the enzyme activity was sedimented by centrifugation at 20 000 g. The enzyme specific activity in the 20 000 g pellet remained unchanged at each point through first cleavage, though it was several-fold higher than in the whole homogenate. The adenylate cyclase from both fertilized and unfertilized eggs was maximally active in vitro when assayed with 10 mM MgSO4 and 10 mM NaF at pH 8 using 0.2 mM AMP-PNP (an ATP analog) as the substrate. Sucrose density gradient centrifugation of egg homogenates showed that adenylate cyclase activity was present in fractions which sedimented at a variety of densities. The adenylate cyclase specific activity in cortices isolated by the method of Sakai [10] from eggs at first cleavage was 4- to 6-fold higher than in unfertilized egg cortices. The increased enzyme activity in egg cortices at first cleavage suggests that adenylate cyclase-containing membranes may become localized within the egg cortex after fertilization.  相似文献   

17.
Metabolic inhibitors were applied after the transport system was fully developed in concentrations sufficient to block cleavage. 0.5–1.0 × 10?4 M cyanide and anaerobiosis caused from negligible to moderate (40%) inhibition of phosphate uptake. The inhibition occurred late in the breeding season, and the inhibitory action of cyanide on uptake was associated with irreversible developmental effects. Azide (3 × 10?3 M) did not inhibit uptake when the chamber method was used, but the aliquot and Hopkins' tube methods gave considerable inhibition. Purified preparations of 2,4-dinitrophenol (1 × 10?4 M) did not inhibit uptake. Sodium iodoacetate (up to 0.05 M) and phlorizin (0.005 M) exerted no effect. Calculations of the minimal work requirement for the transport process reveal that this amounts to only a small fraction (0.24% at an external phosphate concentration of 2 μM) of the total available metabolic energy. Exposure of eggs at five minutes after insemination (lag phase) to cyanide (5 × 10?5 M), anaerobic conditions, or azide (3 × 10?3 M) blocked the expected increase of phosphate uptake. Removal of the inhibitors led to resumption of development and the appearance of the phosphate transport system in an essentially normal pattern. Exposure of eggs to 1.4–2.0 × 10?4 M p-chloromercuribenzoate (p-CMB) during the accumulation phase severely depressed phosphate uptake, but cleavage was not inhibited nor delayed; recovery from the inhibition was accelerated by 1 × 10?3 M cysteine. Exposure to p-CMB during the lag phase blocked the appearance of the transport system; cleavage proceeded normally. After the removal of p-CMB little reversal occurred until the addtion of 1 × 10?3 M cysteine, when the phosphate transport system developed in an essentially normal manner. Trypsin (0.001–0.01%) neither activates the transport system in unfertilized eggs, nor inactivates it in denuded fertilized eggs by removal of surface proteins. The data are consistent with the conclusion that (1) the phosphate transport system is newly synthesized at fertilization in energy dependent reactions, and (2) phosphate transport is a carrier mediated process not directly dependent on metabolic energy.  相似文献   

18.
Actin from sea urchin eggs was fluorescently labeled with fluorescein isothiocyanate (FITC), N-(7-dimethylamino-4-methylcoumarinyl)-maleimide (DACM), or 5-iodoacetamidofluorescein (IAF) and microinjected into sea urchin eggs and oocytes. It distributed evenly in the cytoplasm of unfertilized eggs. Upon fertilization, actin accumulated first around the sperm binding site and, soon afterwards, in the fertilization cone. The accumulation propagated all over the cortex after a latent period of 10-20 sec. In the case of Clypeaster japonicus eggs, propagation of the accumulation coincided with a shape change in the egg, suggesting that the accumulated actin in the cortex generates forces. FITC-actin was incorporated into microvilli and retained in the cortex after cleavage. On the other hand, DACM- or IAF-actin was not incorporated into microvilli and was dispersed from the cortex by cleavage. These differences may be attributable to differences in the properties of the actins labeled at different sites. After photobleaching by laser light irradiation, FITC- or IAF-actin redistributed in the cortex of fertilized egg as quickly as it did before fertilization. When an unfertilized egg was injected with both actin and a calcium buffer (intracellular free Ca2+ concentration 9 microM), the actin accumulation was similar to that during fertilization but without the latent period. This suggests that the accumulation depended on the increase in the intracellular free Ca2+ concentration. When the unfertilized egg was injected with 0.2 M EGTA after injection of labeled actin and then inseminated, it accumulated only in the protrusion of cytoplasm where the sperm had entered, and fertilization was not completed. In immature oocytes, the accumulation was observed in the cortical region, including the huge protrusion of the cytoplasm where the sperm had entered. These results suggest that actin accumulation in the sperm binding site plays an important role in the sperm reception mechanism of the egg.  相似文献   

19.
Electropotential differences between the cell interior and the external medium have been studied with intracellular microelectrodes in ovarian oocytes, ovulated unfertilized eggs and fertilized eggs of R. pipiens. In ovarian oocytes the cytoplasm was 50 to 80 mV negative, relative to isotonic Ringer's solution. In contrast, electrode penetration of the oocyte nucleus in situ indicated that the nucleoplasm was about 25 mV positive, relative to the cytoplasm. After ovulation, the cortical cytoplasm became 20 to 50 mV positive with regard to an external solution of 0.1 strength Ringer's solution (ca. pond water). Penetration of the cytoplasm at levels from 0.3 to 0.6 mm below the egg surface revealed an inner zone with a potential which was about 15 mV negative, relative to the cortical cytoplasm. A slow hyperpolarization of the cortical membrane occurred at activation, with the potential returning to that of the ovulated unfertilized egg within ten minutes. After fertilization, the egg cytoplasm remained positive until the first cleavage. As division proceeded, the cytoplasm slowly depolarized and became 50 to 60 mV negative, relative to 0.1 strength Ringer's solution.  相似文献   

20.
Phospholipid metabolism during early development was examined in the sea urchins Stronglyocentrotus purpuratus and Lytechinus pictus. Transport of 3H-choline was stimulated fivefold following fertilization in both species. However, the actual percent incorporation of labeled precursors into phospholipids from the TCA soluble pool did not change at fertilization. There was a slight increase in transport of 14C-ethanolamine at fertilization but again there was no change in its percent incorporation into phospholipids. When eggs were preloaded with 3H-choline or 14C-ethanolamine and fertilized, the eggs or embryos showed similar patterns of incorporation into phospholipids. There was no significant change in the percent phosphorylation of choline in fertilized or unfertilized eggs.An investigation was made of the activity of choline kinase, the first enzyme in the biosynthesis of phosphatidylcholine. This enzyme was found to have similar activities in fertilized and unfertilized eggs using a variety of homogenization media. The activity of choline kinase was found to decrease slightly in activity at fertilization and reach a maximum activity by gastrula.These results indicate that there is no activation of phospholipid synthesis at fertilization of sea urchin eggs. Apparent increased incorporation actually reflects increased transport of precursors and not de novo synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号