首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat fragmentation may strongly reduce individuals’ dispersal among resource patches and hence influence population distribution and persistence. We studied the impact of landscape heterogeneity on the dispersal of the golden‐crowned sifaka (Propithecus tattersalli), an endangered social lemur species living in a restricted and highly fragmented landscape. We combined spatial analysis and population genetics methods to describe population units and identify the environmental factors which best predict the rates and patterns of genetic differentiation within and between populations. We used non‐invasive methods to genotype 230 individuals at 13 microsatellites in all the main forest fragments of its entire distribution area. Our analyses suggest that the Manankolana River and geographical distance are the primary structuring factors, while a national road crossing the region does not seem to impede gene flow. Altogether, our results are in agreement with a limited influence of forest habitat connectivity on gene flow patterns (except for North of the species’ range), suggesting that dispersal is still possible today among most forest patches for this species. Within forest patches, we find that dispersal is mainly among neighbouring social groups, hence confirming previous behavioural observations.  相似文献   

2.
Dispersal, or the amount of dispersion between an individual's birthplace and that of its offspring, is of great importance in population biology, behavioural ecology and conservation, however, obtaining direct estimates from field data on natural populations can be problematic. The prickly forest skink, Gnypetoscincus queenslandiae, is a rainforest endemic skink from the wet tropics of Australia. Because of its log-dwelling habits and lack of definite nesting sites, a demographic estimate of dispersal distance is difficult to obtain. Neighbourhood size, defined as 4piDsigma2 (where D is the population density and sigma2 the mean axial squared parent-offspring dispersal rate), dispersal and density were estimated directly and indirectly for this species using mark-recapture and microsatellite data, respectively, on lizards captured at a local geographical scale of 3 ha. Mark-recapture data gave a dispersal rate of 843 m2/generation (assuming a generation time of 6.5 years), a time-scaled density of 13 635 individuals * generation/km2 and, hence, a neighbourhood size of 144 individuals. A genetic method based on the multilocus (10 loci) microsatellite genotypes of individuals and their geographical location indicated that there is a significant isolation by distance pattern, and gave a neighbourhood size of 69 individuals, with a 95% confidence interval between 48 and 184. This translates into a dispersal rate of 404 m2/generation when using the mark-recapture density estimation, or an estimate of time-scaled population density of 6520 individuals * generation/km2 when using the mark-recapture dispersal rate estimate. The relationship between the two categories of neighbourhood size, dispersal and density estimates and reasons for any disparities are discussed.  相似文献   

3.
Estimating the rate and scale of dispersal is essential for predicting the dynamics of fragmented populations, yet empirical estimates are typically imprecise and often negatively biased. We maximized detection of dispersal events between small, subdivided populations of water voles (Arvicola terrestris) using a novel method that combined direct capture-mark-recapture with microsatellite genotyping to identify parents and offspring in different populations and hence infer dispersal. We validated the method using individuals known from trapping data to have dispersed between populations. Local populations were linked by high rates of juvenile dispersal but much lower levels of adult dispersal. In the spring breeding population, 19% of females and 33% of males had left their natal population of the previous year. The average interpopulation dispersal distance was 1.8 km (range 0.3-5.2 km). Overall, patterns of dispersal fitted a negative exponential function. Information from genotyping increased the estimated rate and scale of dispersal by three- and twofold, respectively, and hence represents a powerful tool to provide more realistic estimates of dispersal parameters.  相似文献   

4.
Individual dispersal,landscape connectivity and ecological networks   总被引:1,自引:0,他引:1  
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi‐causal process; its restriction to an ‘escape reaction’ to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor‐quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species‐ and landscape‐specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem.  相似文献   

5.
When individuals disperse, they modify the physical and social composition of their reproductive environment, potentially impacting their fitness. The choice an individual makes between dispersal and philopatry is thus critical, hence a better understanding of the mechanisms involved in the decision to leave the natal area is crucial. We explored how combinations of behavioural (exploration, mobility, activity and stress response) and morphological (body mass) traits measured prior to dispersal were linked to the subsequent dispersal decision in 77 roe deer Capreolus capreolus fawns. Using an unusually detailed multi-trait approach, we identified two independent behavioural continuums related to dispersal. First, a continuum of energetic expenditure contrasted individuals of low mobility, low variability in head activity and low body temperature with those that displayed opposite traits. Second, a continuum of neophobia contrasted individuals that explored more prior to dispersal and were more tolerant of capture with those that displayed opposite traits. While accounting for possible confounding effects of condition-dependence (body mass), we showed that future dispersers were less neophobic and had higher energetic budgets than future philopatric individuals, providing strong support for a dispersal syndrome in this species.  相似文献   

6.
Understanding the evolution of dispersal is essential for understanding and predicting the dynamics of natural populations. Two main factors are known to influence dispersal evolution: spatio‐temporal variation in the environment and relatedness between individuals. However, the relation between these factors is still poorly understood, and they are usually treated separately. In this article, I present a theoretical framework that contains and connects effects of both environmental variation and relatedness, and reproduces and extends their known features. Spatial habitat variation selects for balanced dispersal strategies, whereby the population is kept at an ideal free distribution. Within this class of dispersal strategies, I explain how increased dispersal is promoted by perturbations to the dispersal type frequencies. An explicit formula shows the magnitude of the selective advantage of increased dispersal in terms of the spatial variability in the frequencies of the different dispersal strategies present. These variances are capable of capturing various sources of stochasticity and hence establish a common scale for their effects on the evolution of dispersal. The results furthermore indicate an alternative approach to identifying effects of relatedness on dispersal evolution.  相似文献   

7.
The color of noise and the evolution of dispersal   总被引:2,自引:0,他引:2  
The process of dispersal is vital for the long-term persistence of all species and hence is a ubiquitous characteristic of living organisms. A present challenge is to increase our understanding of the factors that govern the dispersal rate of individuals. Here I extend previous work by incorporating both spatial and temporal heterogeneity in terms of patch quality into a spatially explicit lattice model. The spatial heterogeneity is modeled as a two-dimensional fractal landscape, while temporal heterogeneity is included by using one-dimensional noise. It was found that the color of both the spatial and temporal variability influences the rate of dispersal selected as reddening of the temporal noise leads to a reduction in dispersal, while reddening of spatial variability results in an increase in the dispersal rate. These results demonstrate that the color of environmental noise should be considered in future studies looking at the evolution of life history characteristics.  相似文献   

8.
Population studies often focus on demographic and genetic consequences of dispersal strategies, generally within an evolutionary framework. Adaptive investment in dispersal is generally assessed from single types of (pre-)dispersal behaviour that are presumed to reliably reflect the dispersal strategy adopted. Various spider families show a striking and quantifiable display, known as tiptoe behaviour that prepares individuals for take-off prior to (passive) aerial dispersal (ballooning). The lack of efficient control mechanisms during ballooning prevents individuals from actively selecting a suitable habitat for landing. Ballooning dispersal is therefore often regarded as a wind lottery preceded by individual-based risk assessment. Our laboratory experiments showed that the duration of tiptoe behaviour can be used as an indicator of silk thread length, which is related to the potential dispersal distance. For two related species, Erigone arctica and E. dentiplapis, tiptoe duration decreased independently of sex after starvation, while more complex reaction norms were observed for tiptoe frequency.

Because these two aspects of dispersal behaviours show different responses towards a simple stress-factor (starvation) in two related spider species, we conclude that the level of plasticity in dispersal investment can be subject to selective forces affecting different dispersal properties in different ways. Our results, hence, plead for a more holistic approach when addressing evolutionary and applied questions related to dispersal.  相似文献   


9.
Why do the young of cooperative breeders--species in which more than two individuals help raise offspring at a single nest--delay dispersal and live in groups? Answering this deceptively simple question involves examining the costs and benefits of three alternative strategies: (1) dispersal and attempting to breed, (2) dispersal and floating, and (3) delayed dispersal and helping. If, all other things being equal, the fitness of individuals that delay dispersal is greater than the fitness of individuals that disperse and breed on their own, intrinsic benefits are paramount to the current maintenance of delayed dispersal. Intrinsic benefits are directly due to living with others and may include enhanced foraging efficiency and reduced susceptibility to predation. However, if individuals that disperse and attempt to breed in high-quality habitat achieve the highest fitness, extrinsic constraints on the ability of offspring to obtain such high-quality breeding opportunities force offspring to either delay dispersal or float. The relevant constraint to independent reproduction has frequently been termed habitat saturation. This concept, of itself, fails to explain the evolution of delayed dispersal. Instead, we propose the delayed-dispersal threshold model as a guide for organizing and evaluating the ecological factors potentially responsible for this phenomenon. We identify five parameters critical to the probability of delayed dispersal: relative population density, the fitness differential between early dispersal/breeding and delayed dispersal, the observed or hypothetical fitness of floaters, the distribution of territory quality, and spatiotemporal environmental variability. A key conclusion from the model is that no one factor by itself causes delayed dispersal and cooperative breeding. However, a difference in the dispersal patterns between two closely related species or populations (or between individuals in the same population in different years) may be attributable to one or a small set of factors. Much remains to be done to pinpoint the relative importance of different ecological factors in promoting delayed dispersal. This is underscored by our current inability to explain satisfactorily several patterns including the relative significance of floating, geographic biases in the incidence of cooperative breeding, sexual asymmetries in delayed dispersal, the relationship between delayed dispersal leading to helping behavior and cooperative polygamy, and the rarity of the co-occurrence of helpers and floaters within the same population. Advances in this field remain to be made along several fronts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Bowler DE  Benton TG 《Oecologia》2011,166(1):111-119
Dispersal can play an important role in both the local and regional dynamics of populations. Empirical studies have shown that the proportion of individuals dispersing is often density dependent, which may have implications for the effect of dispersal on populations. In this study, we manipulate the dispersal strategy of adults within two-patch laboratory populations of soil mites and compare the consequences of fixed (density-independent) and density-dependent dispersal in environments of constant and temporally varying resource availability. Effects of dispersal on population dynamics were dependent on the presence of environmental variation. Both dispersal strategies tended to spatially homogenize the population abundance of adults in a variable environment. However, the effect of environmental variation on mean adult abundance was greater with density-dependent dispersal than with fixed dispersal. Adult dispersal did not affect juvenile or egg abundance. This study demonstrates the potential significance of density-dependent dispersal for population dynamics, but emphasizes the role of the environmental context.  相似文献   

11.
The evolutionary explanation for lifespan variation is still based on the antagonistic pleiotropy hypothesis, which has been challenged by several studies. Alternative models assume the existence of genes that favor aging and group benefits at the expense of reductions in individual lifespans. Here we propose a new model without making such assumptions. It considers that limited dispersal can generate, through reduced gene flow, spatial segregation of individual organisms according to lifespan. Individuals from subpopulations with shorter lifespan could thus resist collapse in a growing population better than individuals from subpopulations with longer lifespan, hence reducing lifespan variability within species. As species that disperse less may form more homogeneous subpopulations regarding lifespan, this may lead to a greater capacity to maximize lifespan that generates viable subpopulations, therefore creating negative associations between dispersal capacity and lifespan across species. We tested our model with individual‐based simulations and a comparative study using empirical data of maximum lifespan and natal dispersal distance in 26 species of birds, controlling for the effects of genetic variability, body size, and phylogeny. Simulations resulted in maximum lifespans arising from lowest dispersal probabilities, and comparative analyses resulted in a negative association between lifespan and natal dispersal distance, thus consistent with our model. Our findings therefore suggest that the evolution of lifespan variability is the result of the ecological process of dispersal.  相似文献   

12.
What is the required minimum landscape size for dispersal studies?   总被引:2,自引:0,他引:2  
Among small animals dispersal parameters are mainly obtained by traditional methods using population studies of marked individuals. Dispersal studies may underestimate the rate and distance of dispersal, and be biased because of aggregated habitat patches and a small study area. The probability of observing long distance dispersal events decreases with distance travelled by the organisms. In this study a new approach is presented to solve this methodological problem. An extensive mark-release-recapture programme was performed in an area of 81 km(2) in southern Sweden. To estimate the required size of the study area for adequate dispersal measures we examined the effect of study area size on dispersal distance using empirical data and a repeated subsampling procedure. In 2003 and 2004, two species of diurnal burnet moths (Zygaenidae) were studied to explore dispersal patterns. The longest confirmed dispersal distance was 5600 m and in total 100 dispersal events were found between habitat patches for the two species. The estimated dispersal distance was strongly affected by the size of the study area and the number of marked individuals. For areas less than 10 km(2) most of the dispersal events were undetected. Realistic estimates of dispersal distance require a study area of at least 50 km(2). To obtain adequate measures of dispersal, the marked population should be large, preferably over 500 recaptured individuals. This result was evident for the mean moved distance, mean dispersal distance and maximum dispersal distance. In general, traditional dispersal studies are performed in small study areas and based on few individuals and should therefore be interpreted with care. Adequate dispersal measures for insects obtained by radio-tracking and genetic estimates (gene flow) is still a challenge for the future.  相似文献   

13.
Temporal and spatial variations of the environment are important factors favoring the evolution of dispersal. With few exceptions, these variations have been considered to be exclusively fluctuations of habitat quality. However, since the presence of conspecifics forms part of an individual's environment, demographic stochasticity may be a component of this variability as well, in particular when local populations are small. To study this effect, we analyzed the evolution of juvenile dispersal in a metapopulation model in which habitat quality is constant in space and time but occupancy fluctuates because of demographic stochasticity. Our analysis extends previous studies in that it includes competition of resources and competition for space. Also, juvenile dispersal is not given by a fixed probability but is made conditional on the presence of free territories in a patch, whereas individuals born in full patches will always disperse. Using a combination of analytical and numerical approaches, we show that demographic stochasticity in itself may provide enough variability to favor dispersal even from patches that are not fully occupied. However, there is no simple relationship between the evolution of dispersal and various indicators of demographic stochasticity. Selected dispersal depends on all aspects of the life-history profile, including kin selection.  相似文献   

14.
During a 5-year study of the cooperatively living acorn woodpecker Melanerpes formicivorus, I observed 26 irruptions of agonistic behaviour involving large numbers of intruders invading a territory. Evidence from several sources suggests that these invasions are usually contests among potential immigrants for the opportunity to replace a missing group member (hence, ‘power struggles’). Thus, power struggles indicate intense competition among individuals to transfer out of their natal group. Such dispersal is not necessarily excluded by the hypothesis that individuals gain directly by living in cooperative groups through either increased foraging efficiency or better predator defence. However, birds involved in power struggles expend considerable energy and incur considerable risks. These costs are likely to be an acceptable part of dispersal only if cooperative living is a result of birds being forced to remain in groups as a result of resource localization.  相似文献   

15.
In general, landscape genetic studies have ignored the potential role that the phenotype of individuals plays in determining fine-scale genetic structure in species. This potential over-simplification ignores an important component that dispersal is both condition- and phenotype-dependent. In order to investigate the relationship between potential dispersal, habitat selection and phenotype, we examined the spatial ecology, body mass and fine-scale genetic structure of weasels (Mustela nivalis) in Bia?owie?a Forest in Poland. Our study population is characterized by an almost three-fold phenotypic variation in adult body mass and weasels were segregated in certain habitats according to size. We detected significant genetic structuring associated with habitat within the studied area and analyses of radio-tracking and re-capture data showed that the maximum extent of movement was achieved by weasels of medium body size, whereas the smallest and largest individuals exhibited higher site fidelity. With the unrestricted movement of the medium-sized individuals across optimal habitat, genetic admixture does occur. However, the presence of a barrier leads to unidirectional gene flow, with larger individuals outcompeting smaller individuals and therefore maintaining the genetic break in the study area. This highlights the importance of considering both intrinsic (phenotype) and extrinsic (environmental) factors in understanding dispersal patterns and ultimately, gene flow in complex landscapes.  相似文献   

16.
In this article, we explore the impact of sex-biased dispersal on local relatedness and on selection for helping and harming behavior among males and females. We show that in a patch-structured population, when there is a marked sex bias in dispersal, selection will almost always favor harming behavior among individuals of the sex more prone to dispersal. This result holds regardless of the effects of mating skew or overlapping generations. Selection may well also favor helping behavior among individuals of the philopatric sex, particularly if there is generational overlap, but this is less likely to occur if individuals of the philopatric sex compete more intensely for fewer breeding opportunities. In this last case, if generational overlap is low and mating skew pronounced, the result may be selection for harming behavior among both males and females. In general, the rate of dispersal and the level of relatedness among individuals of one sex do not reliably predict their level of helping or harming behavior; selection on either males or females depends on the dispersal of both sexes.  相似文献   

17.
Traditional, and often competing, theories on ageing agree that a programmed age at death must have arisen as a side effect of natural selection, and that it can have no adaptive value of its own. However, theoretical models suggest that ageing and programmed death can be adaptive. Travis J. M. J. suggested that if fecundity declines with age, a programmed age of death evolves through kin selection and that the nature of dispersal is crucial as it determines the degree of spatial structure and hence the strength of kin selection. Here, using a similar model, we consider the interplay between dispersal and age of death. We incorporate more realistic dispersal kernels and allow both dispersal and age of death to evolve. Our results show each trait can evolve in response to the other: earlier age of death evolves when individuals disperse less and greater dispersal distances evolve when individuals are programmed to die later. When we allow dispersal and age of death to evolve at the same time we typically find that dispersal evolves more rapidly, and that ageing then evolves in response to the new dispersal regime. The cost of dispersal is crucial in determining the evolution of both traits. We argue both that ageing is an overlooked ecological process, and that the field of gerontology could learn a lot from evolutionary ecology. We suggest that it is time to develop the field of ecological gerontology and we highlight a few areas where future work might be particularly rewarding.  相似文献   

18.
Population viscosity has been proposed as an important mechanism for the evolution of cooperation. The idea is that if individuals do not disperse far during the course of their lives, they will tend to interact with their genealogical relatives, which may give kin-selected benefits for cooperation. However, in the simplest model of population structure, the evolution of cooperation is unaffected by the rate of dispersal, owing to dispersal also mediating competition between social partners. This surprising result has generated much research interest in recent years. Here I show that dispersal does matter if there is a sex difference in dispersal rate, even when the expression of cooperation is not conditional upon the actor's dispersal status or sex. In particular, I show that cooperation among juveniles is relatively favoured when there is a small sex bias in adult dispersal in favour of the sex with the greatest variance in reproductive success, and is relatively disfavoured when this sex bias is large or in the opposite direction. This is because dispersal by individuals of each sex can have different consequences for the genetic structure of the population.  相似文献   

19.
Dispersal distributions are often characterized by many individuals that stay close to their origin and large variation in the distances moved by those that leave. This variation in dispersal distance can strongly influence demographic, ecological, and evolutionary processes. However, a lack of data on the fitness and phenotype of individual dispersers has impeded research on the role of natural selection in maintaining variation in dispersal distance. Six years of spatially explicit capture-mark-recapture data showed that survival increased with dispersal distance in the stream salamander Gyrinophilus porphyriticus. To understand the evolutionary implications of this fitness response, we tested whether variation in dispersal distance has a phenotypic basis. We used photographs of marked individuals to measure head, trunk, and leg morphology. We then tested whether dispersal distances over the six-year study period were predicted by these traits. Dispersal distance was significantly related to leg morphology: individuals with relatively long forelimbs and short hindlimbs dispersed the farthest. These results support the hypothesis that positive fitness consequences maintain phenotypes enabling long-distance dispersal. More broadly, they suggest that natural selection can promote variation in dispersal distance and associated phenotypes, offering an alternative to the view that dispersal distance is driven by stochastic or landscape-specific mechanisms.  相似文献   

20.
Disentangling ecological, behavioural and evolutionary factors responsible for the presence of stable population structure within wild populations has long been challenging to population geneticists. This study primarily aimed at decoding population structure of wild walleye (Sander vitreus) populations of Mistassini Lake (Québec, Canada) in order to define source populations to be used for the study of spatial partitioning using individual-based multilocus assignment methods, and decipher the dynamics of individual dispersal and resulting patterns of spatial resource partitioning and connectivity among populations. A second objective was to elucidate the relationships between biological characteristics (sex, size, age and population of origin) and an individual's probability to migrate and/or disperse. To do so, a total of 780 spawning individuals caught on five distinct spawning sites, and 1165 postspawning individuals, captured over two sampling seasons (2002-2003) were analysed by means of eight microsatellite loci. Four temporally stable walleye populations associated with distinct reproductive grounds were detected. These populations were differentially distributed among lake sectors during their feeding migration and their spatial distribution was stable over the two sampling seasons. Dispersing individuals were identified (n=61); these revealed asymmetrical patterns of dispersal between populations, which was also confirmed by divergent admixture proportions. Regression models underlined population of origin as the only factor explaining differential dispersal of individuals among populations. An analysis of covariance (ancova) indicated that larger individuals tended to migrate from their river of origin further away in the lake relative to smaller fish. In summary, this study underlined the relevance of using individual-based assignment methods for deciphering dynamics of connectivity among wild populations, especially regarding behavioural mechanisms such as differential spatial partitioning and dispersal responsible for the maintenance of genetic population structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号