首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
果蝇Drosophila melanogaster Meigen是进行行为遗传学研究的极好材料。果蝇的雄性求偶行为已经被作为行为遗传学研究的模式。文章简要介绍近年来在遗传和分子水平上对果蝇性信息素和求偶行为的研究进展,尤其是突变体在果蝇行为遗传学研究中的应用。通过对果蝇求偶行为的分析,分别介绍果蝇的性信息素及视觉、听觉、嗅觉和味觉相关基因在果蝇求偶和交配行为过程中的作用。  相似文献   

2.
A protein from Drosophila melanogaster which inhibits bovine alpha-chymotrypsin activity was purified using an extensive extraction procedure. SP-Sephadex column chromatography and affinity column chromatography. The inhibitor has an estimated molecular weight of approx. 12 000 and is extremely pH and heat stable. It did not exhibit any inhibitory activity against trypsin from numerous sources nor mosquito larval chymotrypsin but did inhibit adult mosquito chymotrypsin. Chymotrypsin-like activity has not been found in Drosophila and therefore the function of the inhibitor is unknown. Preliminary work indicates that it effectively inhibits cathepsin D activity from a nematode parasite and rabbit liver.  相似文献   

3.
Insect olfactory receptor (Or) genes are large, rapidly evolving gene families of considerable interest for evolutionary studies. They determine the responses of sensory neurons which mediate critical behaviours and ecological adaptations. We investigated the evolution across the genus Drosophila of a subfamily of Or genes largely responsible for the perception of ecologically relevant aliphatic esters; products of yeast fermentation and fruits. Odour responses were recorded from eight classes of olfactory receptor neurons known to express this Or subfamily in D. melanogaster and from homologous sensilla in seven other species. Despite the fact that these species have diverged over an estimated 40 million years, we find that odour specificity is largely maintained in seven of the eight species. In contrast, we observe extensive changes in most neurons of the outgroup species D. virilis, and in two neurons across the entire genus. Some neurons show small shifts in specificity, whilst some dramatic changes correlate with gene duplication or loss. An olfactory receptor neuron response similarity tree did not match an Or sequence similarity tree, but by aligning Or proteins of likely functional equivalence we identify residues that may be relevant for odour specificity. This will inform future structure–function studies of Drosophila Ors.  相似文献   

4.
Liu W  Xue L 《PloS one》2012,7(1):e30980
The Drosophila Pax gene gooseberry (gsb) is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.  相似文献   

5.
Phylogenetic analyses supported the hypothesis that the vertebrate toll-like receptors (TLRs) include two very ancient groups that arose by gene duplication prior to the divergence of protostomes and deuterostomes: (1) the TLR1 family (including mammalian TLR1, TLR2, TLR6, and TLR10); and (2) a clade including the remainder of mammalian TLRs. Correlating data on ligand type, subcellular localization, and gene expression in leukocytes and other tissues with the phylogeny provided evidence that certain major functional specializations within the TLRs occurred after ancient gene duplication events and that these traits have been retained through further events of gene duplication. For example, the recognition of bacterial lipoproteins appears to have arisen in the ancestor of the TLR1 family and continues to characterize members of that family whose ligands are known. Likewise, expression on the endosomal membrane and the recognition of nucleic acids appears to have been arisen in the ancestor of the TLR7 family and some related TLRs. On the other hand, gene expression patterns across tissues appear to have been much more volatile over the evolution of the vertebrate TLRs, since genes may show expression profiles similar to those of distantly related genes but dissimilar to those of closely related genes. Thus, the vertebrate TLRs provide an example of a multi-gene family in which gene duplication has been followed by extensive changes in certain aspects of gene function, while others have been conserved throughout vertebrate history. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
Tick carboxypeptidase inhibitor (TCI) is a small, disulfide-rich protein that selectively inhibits metallocarboxypeptidases and strongly accelerates the fibrinolysis of blood clots. TCI consists of two domains that are structurally very similar, each containing three disulfide bonds arranged in an almost identical fashion. The oxidative folding and reductive unfolding pathways of TCI and its separated domains have been characterized by kinetic and structural analysis of the acid-trapped folding intermediates. TCI folding proceeds through a sequential formation of 1-, 2-, 3-, 4-, 5-, and 6-disulfide species to reach the native form. Folding intermediates of TCI comprise two predominant 3-disulfide species (named IIIa and IIIb) and a major 6-disulfide scrambled isomer (Xa) that consecutively accumulate along the reaction and are strongly prevented by the presence of protein disulfide isomerase. This study demonstrates that IIIa and IIIb are 3-disulfide species containing the native disulfide pairings of the N- and C-terminal domains of TCI, respectively, and explains why the two domains of TCI fold sequentially and independently. Also, we show that the reductive unfolding of TCI undergoes two main independent unfolding events through the formation of IIIa and IIIb intermediates. Together, the comparison of the folding, stability, and inhibitory activity of TCI with those of the isolated domains reveals the reasons behind the two-domain nature of this protein: both domains contribute to the specificity and high affinity of its double-headed binding to carboxypeptidases. The results obtained herein provide valuable information for the design of more potent and selective TCI molecules.  相似文献   

8.
Internally fertilizing organisms transfer a complex assortment of seminal fluid proteins, a substantial fraction of which are proteolysis regulators. In mammals, some seminal protease inhibitors have been implicated in male infertility and these same molecular classes of protease inhibitors are also found in Drosophila seminal fluid. Here, we tested the reproductive functions of the Drosophila melanogaster seminal fluid protease inhibitor Acp62F by generating a precise deletion of the Acp62F gene. We did not detect a nonredundant function for Acp62F in modulating the egg laying, fertility, remating frequency, or life span of mated females. However, loss of Acp62F did alter a male's defensive sperm competitive ability, consistent with the localization of Acp62F to sperm storage organs. In addition, the processing of at least one seminal protein, the ovulation hormone ovulin, is slower in the absence of Acp62F.  相似文献   

9.
Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in‐depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real‐time quantitative polymerase chain reaction (RT‐qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue‐ and bud dormant‐specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine‐tuned by the environment during the dormancy process in apple.  相似文献   

10.
We have characterized a Kazal family serine protease inhibitor, Toxoplasma gondii protease inhibitor 1 (TgPI-1), in the obligate intracellular parasite Toxoplasma gondii. TgPI-1 contains four inhibitor domains predicted to inhibit trypsin, chymotrypsin, and elastase. Antibodies against recombinant TgPI-1 detect two polypeptides, of 43 and 41 kDa, designated TgPI-1(43) and TgPI-1(41), in tachyzoites, bradyzoites, and sporozoites. TgPI-1(43) and TgPI-1(41) are secreted constitutively from dense granules into the excreted/secreted antigen fraction as well as the parasitophorous vacuole that T. gondii occupies during intracellular replication. Recombinant TgPI-1 inhibits trypsin, chymotrypsin, pancreatic elastase, and neutrophil elastase. Immunoprecipitation studies with anti-rTgPI-1 antibodies reveal that recombinant TgPI-1 forms a complex with trypsin that is dependent on interactions with the active site of the protease. TgPI-1 is the first anti-trypsin/chymotrypsin inhibitor to be identified in bradyzoites and sporozoites, stages of the parasite that would be exposed to proteolytic enzymes in the digestive tract of the host.  相似文献   

11.
The molecular basis of odor coding in the Drosophila larva   总被引:2,自引:0,他引:2  
Kreher SA  Kwon JY  Carlson JR 《Neuron》2005,46(3):445-456
We have analyzed the molecular basis of odor coding in the Drosophila larva. A subset of Or genes is found to be expressed in larval olfactory receptor neurons (ORNs). Using an in vivo expression system and electrophysiology, we demonstrate that these genes encode functional odor receptors and determine their response spectra with 27 odors. The receptors vary in their breadth of tuning, exhibit both excitation and inhibition, and show different onset and termination kinetics. An individual receptor appears to transmit signals via a single ORN to a single glomerulus in the larval antennal lobe. We provide a spatial map of odor information in the larval brain and find that ORNs with related functional specificity map to related spatial positions. The results show how one family of receptors underlies odor coding in two markedly different olfactory systems; they also provide a molecular mechanism to explain longstanding observations of larval odor discrimination.  相似文献   

12.
13.
The molecular basis of odor coding in the Drosophila antenna   总被引:6,自引:0,他引:6  
Hallem EA  Ho MG  Carlson JR 《Cell》2004,117(7):965-979
We have undertaken a functional analysis of the odorant receptor repertoire in the Drosophila antenna. Each receptor was expressed in a mutant olfactory receptor neuron (ORN) used as a "decoder," and the odor response spectrum conferred by the receptor was determined in vivo by electrophysiological recordings. The spectra of these receptors were then matched to those of defined ORNs to establish a receptor-to-neuron map. In addition to the odor response spectrum, the receptors dictate the signaling mode, i.e., excitation or inhibition, and the response dynamics of the neuron. An individual receptor can mediate both excitatory and inhibitory responses to different odorants in the same cell, suggesting a model of odorant receptor transduction. Receptors vary widely in their breadth of tuning, and odorants vary widely in the number of receptors they activate. Together, these properties provide a molecular basis for odor coding by the receptor repertoire of an olfactory organ.  相似文献   

14.
Functional characterization of the dRYBP gene in Drosophila   总被引:1,自引:0,他引:1       下载免费PDF全文
González I  Aparicio R  Busturia A 《Genetics》2008,179(3):1373-1388
  相似文献   

15.
The mammalian Protocadherin (Pcdh) alpha, beta, and gamma gene clusters encode a large family of cadherin-like transmembrane proteins that are differentially expressed in individual neurons. The 22 isoforms of the Pcdhg gene cluster are diversified into A-, B-, and C-types, and the C-type isoforms differ from all other clustered Pcdhs in sequence and expression. Here, we show that mice lacking the three C-type isoforms are phenotypically indistinguishable from the Pcdhg null mutants, displaying virtually identical cellular and synaptic alterations resulting from neuronal apoptosis. By contrast, mice lacking three A-type isoforms exhibit no detectable phenotypes. Remarkably, however, genetically blocking apoptosis rescues the neonatal lethality of the C-type isoform knockouts, but not that of the Pcdhg null mutants. We conclude that the role of the Pcdhg gene cluster in neuronal survival is primarily, if not specifically, mediated by its C-type isoforms, whereas a separate role essential for postnatal development, likely in neuronal wiring, requires isoform diversity.  相似文献   

16.
We present phylogenetic analyses of the lizard genus Ctenophorus using 1,639 aligned positions of mitochondrial DNA sequences containing 799 parsimony-informative characters for samples of 22 species of Ctenophorus and 12 additional Australian agamid genera. Sequences from three protein-coding genes (ND1, ND2, and COI) and eight intervening tRNA genes are examined using both parsimony and maximum-likelihood analyses. Species of Ctenophorus form a monophyletic group with Rankinia adelaidensis, which we suggest placing in Ctenophorus. Ecological differentiation among species of Ctenophorus is most evident in the kinds of habitats used for shelter. Phylogenetic analyses suggest that the ancestral condition is to use burrows for shelter, and that habits of sheltering in rocks and shrubs/hummock grasses represent separately derived conditions. Ctenophorus appears to have undergone extensive cladogenesis approximately 10-12 million years ago, with all three major ecological modes being established at that time.  相似文献   

17.
The extent of diversity among bitter-sensing neurons is a fundamental issue in the field of taste. Data are limited and conflicting as to whether bitter neurons are broadly tuned and uniform, resulting in indiscriminate avoidance of bitter stimuli, or diverse, allowing a more discerning evaluation of food sources. We provide a systematic analysis of how bitter taste is encoded by the major taste organ of the Drosophila head, the labellum. Each of 16 bitter compounds is tested physiologically against all 31 taste hairs, revealing responses that are diverse in magnitude and dynamics. Four functional classes of bitter neurons are defined. Four corresponding classes are defined through expression analysis of all 68 gustatory taste receptors. A receptor-to-neuron-to-tastant map is constructed. Misexpression of one receptor confers bitter responses as predicted by the map. These results reveal a degree of complexity that greatly expands the capacity of the system to encode bitter taste.  相似文献   

18.
Clitocypin from the basidiomycete Clitocybe nebularis is the first fungal protein cysteine protease inhibitor to be characterised in detail, yet no information on its molecular genetics is available. Owing to its unique characteristics, it was assigned as the only member of a new family of cysteine protease inhibitors in the MEROPS inhibitor classification. Here we describe the full-length sequence of the clitocypin gene. A BLAST search confirmed its lack of significant sequence similarity to any other gene. The gene is composed of four exons and three short introns and belongs to a small family of closely related genes with more than 90% identity. Sequence variability is evenly distributed in introns and exons and deduced amino acid substitutions are distributed throughout the protein sequence. Basidiocarps collected at two distant locations were examined and the level of heterogeneity found in one basidiocarp is similar to that between the two. Sequencing of the ribosomal DNA spacers from the two basidiocarps confirmed that the heterogeneity observed in the clitocypin gene is not due to evolutionary divergence of the two specimens caused by geographic separation. Clitocypin is expressed in different parts of the basidiocarp and in cultured mycelia in a manner suggesting regulation by developmental and/or environmental factors.  相似文献   

19.
Eppin has two potential protease inhibitory domains: a whey acid protein or four disulfide core domain and a Kunitz domain. The protein is also reported to have antibacterial activity against Gram-negative bacteria. Eppin and its whey acid protein and Kunitz domains were expressed in Escherichia coli and their ability to inhibit proteases and kill bacteria compared. The Kunitz domain inhibits elastase (EC 3.4.21.37) to a similar extent as intact eppin, whereas the whey acid protein domain has no such activity. None of these fragments inhibits trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1) at the concentrations tested. In a colony forming unit assay, both domains have some antibacterial activity against E. coli, but this was not to the same degree as intact eppin or the two domains together. When bacterial respiratory electron transport was measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, eppin and its domains caused an increase in the rate of respiration. This suggests that the mechanism of cell killing may be partly through the permeablization of the bacterial inner membrane, resulting in uncoupling of respiratory electron transport and consequent collapse of the proton motive force. Thus, we conclude that although both of eppin's domains are involved in the protein's antibacterial activity, only the Kunitz domain is required for selective protease inhibition.  相似文献   

20.
The molecular basis for metameric pattern in the Drosophila embryo   总被引:90,自引:0,他引:90  
The metameric organization of the Drosophila embryo is generated in the first 5 h after fertilization. An initially rather simple pattern provides the foundation for subsequent development and diversification of the segmented part of the body. Many of the genes that control the formation of this pattern have been identified and at least twenty have been cloned. By combining the techniques of genetics, molecular biology and experimental embryology, it is becoming possible to unravel the role played by each of these genes. The repeating segment pattern is defined by the persistent expression of engrailed and of other genes of the 'segment polarity' class. The establishment of this pattern is directed by a transient molecular prepattern that is generated in the blastoderm by the activity of the 'pair-rule' genes. Maternal determinants at the poles of the egg coordinate this prepattern and define the anteroposterior sequence of pattern elements. The primary effect of these determinants is not known, but genes required for their production have been identified and the product of one of these, bicoid is known to be localized at the anterior of the egg. One early consequence of their activity is to define domains along the A-P axis within which a series of 'cardinal' genes are transcribed. The activity of the cardinal genes is required both to coordinate the process of segmentation and to define the early domains of homeotic gene expression. Further interactions between the homeotic genes and other classes of segmentation genes refine the initial establishment of segment identities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号