首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our study of the techniques of long-term storage of the biomass of various strains of microorganisms, which cause breakdown or transformation of synthetic organic compounds, demonstrates that desiccated agar beads with immobilized microbial cells can be used for this purpose. In addition, the cells can be stored in desiccated matrices of agar or polyvinyl alcohol, coating synthetic cords. Such dry biocatalysts may be used for quick starting of bioreactors and in other biotechnological processes. The technique is applicable to storage of various strains ofPseudomonas, Corynebacterium, Rhodococcus, and, to a lesser extent, Enterobacteriaceae.  相似文献   

2.
Degradation of phenol by polymer entrapped microorganisms   总被引:10,自引:0,他引:10  
Summary A Pseudomonas sp. which was isolated from phenol-containing soil was immobilized in alginate and polyacrylamide-hydrazide (PAAH) and cultivated in a special airlift fermenter.The immobilized Pseudomonas sp. was able to degrade phenol at initial concentrations up to 2 g/l in less than 2 days, although the free cells did not grow at this concentration.The immobilization materials act as a protective cover against phenol, PAAH being more effective than alginate. The degradation activity as well as the outgrowth of bacteria can be manipulated by the concentration of the immobilization material, the temperature and the nitrogen content in the medium.The cells grew predominantly in microcolonies in the outer area of the beads when nitrogen was available as 1.0g NH4NO3/l and 0.5g (NH4)2SO4/l.Prof. Dr. A. Fiechter dedicated to his 60th birthday  相似文献   

3.
Five prospective microbial associations for conversion of stillage carbohydrates (sugars and dextrins) to acetate have been isolated from natural and anthropogenic sources. The characteristics of biological treatment of the stillage containing up to 40 g of carbohydrates/L have been studied using the Tambukan Silt association immobilized on the polymer nonwoven fibrous organic matrices. The microorganism association immobilized on matrices forms bio-hybrid materials of different features depending on their nature. Maximum biomass of the microbial association accumulates in matrices 9.11 and 9.21, oxidizes stillage carbohydrates, and accumulates acetate in the medium creating its lower redox potential more efficiently than in other matrices. It is supposed that the formation of the bio-hybrid materials has resulted in the formation of specific bacterial systems differing in physical and biochemical properties due to the principal development of specific microbial cell groups.  相似文献   

4.
Summary The oxygen uptake rates of Pseudomonas putida, Saccharomyces cerevisiae and Aspergillus niger, immobilized in Ca-alginate gel, were determined in comparison with the respiration of free cells. The specific oxygen uptake rate of immobilized microorganisms decreased with increasing cell content of the gel beads and increasing alginate concentration.Abbreviations ATCC American Type Culture Collection - DFA Deutsche Forschungsanstalt für Lebensmittelchemie - DSM Deutsche Stammsammlung von Mikroorganismen - DW dry weight - rpm rounds per minute  相似文献   

5.
6.
7.
8.
A dual enzyme electrode for the detection of adenosine-5'-triphosphate (ATP) at physiologically relevant pH levels was developed by co-immobilization of the enzymes glucose oxidase (GOD) and hexokinase (HEX) using pH-shift induced deposition of enzyme containing polymer films. Application of a simple electrochemical procedure for the co-immobilization of the enzymes at electrode surfaces exhibits a major improvement of sensitivity, response time, reproducibility, and ease of fabrication of ATP biosensors. Competition between glucose oxidase and hexokinase for the substrate glucose involving ATP as a co-substrate allows the determination of ATP concentrations. Notable control on the immobilization process enables fabrication of micro biosensors with a diameter of 25 microm. The presented concept provides the technological basis for a new generation of fast responding, sensitive, and robust biosensors for the detection of ATP at physiological pH values with a detection limit of 10 nmol l(-1).  相似文献   

9.
We demonstrate that the chondroitin sulfate proteoglycan exhibits enhanced sensitivity to the flow of water compared to other macromolecules which is in accord with their functional role in conferring compressive resistance to cartilage. In order to understand factors that may contribute to its low hydraulic conductivity, a comparative study of hydraulic conductivity, as measured by the sedimentation velocity technique is made of various macromolecules representing variations in charge density, chemical composition, thermodynamic nonideality, size and flexibility. The polymers examined were dextran, poly(ethylene glycol), poly(vinyl alcohol), albumin, and dextran sulfate. The differences in hydraulic conductivity between the various macromolecules could not be explained by conventional theories which included prediction of hydraulic conductivity related to the radius of the molecule regarded as a uniform cylinder, nor the absolute charge density of the molecule and nor to the steric hindrance offered by the macromolecule to the diffusion of tritiated water. A qualitative relationship is established, however, between the noncounterion polymer contribution to osmotic activity and the resistance to water flow for polymers with high osmotic activity.  相似文献   

10.
Recombinant microorganisms for industrial production of antibiotics   总被引:2,自引:0,他引:2  
The enhancement of industrial antibiotic yield has been achieved through technological innovations and traditional strain improvement programs based on random mutation and screening. The development of recombinant DNA techniques and their application to antibiotic producing microorganisms has allowed yield increments and the design of biosynthetic pathways giving rise to new antibiotics. Genetic manipulations of the cephalosporin producing fungus Cephalosporium acremonium have included yield improvements, accomplished increasing biosynthetic gene dosage or enhancing oxygen uptake, and new biosynthetic capacities as 7-aminocephalosporanic acid (7-ACA) or penicillin G production. Similarly, in Penicillium chrysogenum, the industrial penicillin producing fungus, heterologous expression of cephalosporin biosynthetic genes has led to the biosynthesis of adipyl-7-aminodeacetoxycephalosporanic acid (adipyl-7-ADCA) and adipyl-7-ACA, compounds that can be transformed into the economically relevant 7-ADCA and 7-ACA intermediates. Escherichia coli expression of the genes encoding D-amino acid oxidase and cephalosporin acylase activities has simplified the bioconversion of cephalosporin C into 7-ACA, eliminating the use of organic solvents. The genetic manipulation of antibiotic producing actinomycetes has allowed productivity increments and the development of new hybrid antibiotics. A legal framework has been developed for the confined manipulation of genetically modified organisms. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 216-226, 1997.  相似文献   

11.
Summary High-productivity continuous fermentation processes have been developed for the production of important industrial microorganisms in specially designed fermentors.Saccharomyces cerevisiae, Pichia pastoris, Kluyveromyces fragilis, andCandida utilis yeasts have been grown in bench-scale fermentors at cell densities of over 120 g/l, whileEscherichia coli, Bacillus megaterium, Methylomonas sp. andPseudomonas putida bacteria have been cultivated to cell densities of more than 110 g/l. Productivities (g cells per 1 per h) greater than 25 have been achieved in both bench-scale and 1500-liter fermentors with yeasts, and values as high as 55 have been achieved with bacteria in the bench-scale fermentor. The microorganisms were grown on defined media using ammonia for pH control and as nitrogen source. The fermentor, capable of high oxygen and heat transfer rates, was operated at constant volume with continuous feed and product discharge. The high-productivity process reduces fermentor size, media sterilization requirements, and may under some circumstances eliminate waste and recycle streams. It can also be applied to a variety of biological products.  相似文献   

12.
Moon JY  Jung HJ  Moon MH  Chung BC  Choi MH 《Steroids》2008,73(11):1090-1097
Although the hydrophobic interaction-based solid-phase extraction (SPE) has been widely used, the extraction yields of steroids including androgens, estrogens, and corticoids were slightly different along with the physical and chemical properties of each molecule. A new SPE technique based on the formation of an inclusion complex with beta-cyclodextrin (betaCD) has been achieved for comprehensive sample purification in mass spectrometric analysis of 45 endogenous or synthetic androgens, 11 endogenous estrogens, and 21 corticoids. A copolymer of betaCD with epichlorohydrin was prepared by a cross-linking reaction followed by entrapment with 0.3M CaCl(2) to yield an improved SPE sorbent and the hydrolyzed urine samples were applied for purification. Steroidal compounds tested on the entrapped betaCD polymer were extracted with tetrahydrofuran and the overall recoveries ranged from 82% to 112% for 77 steroids in urine. Especially, the hydroxylated estrogens showed an excellent binding capacity (96-116% recovery) to betaCD through hydrogen bonding between their phenolic hydroxyl and exterior hydroxyl groups. A comparison between SPE methods with betaCD and Oasis HLB as a conventional cartridge showed that the extraction efficiency of polar steroids was significantly increased in the betaCD experiment, which has no connection with different polarity of steroid molecules. Due to its multi-functional mechanism derived from molecular inclusion and chemical interactions, this new SPE sorbent resulted in better selectivity and extraction efficiency than that obtained using the conventionally used hydrophobicity-based SPE method.  相似文献   

13.
Disintegration of microorganisms in a continuously working industrial homogenizer has been studied. The homogenizer consists of rotating discs in a cylinder filled with glass beads. Different parameters for disintegration of baker's yeast were investigated. The disintegration process is a first-order reaction and it is influenced by the flow rate of the suspension and by the agitator speed. At a flow rate of 200 liters/hr about 85% of the yeast cells can be disrupted in a single pass through the disintegrator. This type of disintegrator can be used for disruption of cells in order to produce single-cell protein, active enzymes and other valuable cell components.  相似文献   

14.
Ribonucleic acids were entrapped into phospholipid vesicles (liposomes). After incubation of the liposomes containing RNA (L- RNA), the RNA was introduced into the cells. The kinetics of L- RNA uptake by the cells in culture were studied. The uptake of L- RNA is linear over a broad vesicle concentration range depending on temperature, and at 37 degrees C uptake levels reach a plateau after 3 hours. Inhibitors of cellular energy metabolism have little effect on the uptake, and thus fusion, as the main mechanism of uptake, is proposed.  相似文献   

15.
The heterologous expression of proteins is without doubt one of the most fascinating applications of the recombinant DNA technique. Despite clear successes many attempts to produce a certain protein in a heterologous host cell have met with technical difficulties. Secretion from cells has been used as a solution to overcome the intracellular formation of inactive protein. Microorganisms with a history of use in the fermentation industry exhibit clear advantages over the frequently usedEscherichia coli as host cells for secreted products. Interleukin-3, chymosin and phytase are examples of commercial products that are produced efficiently with the aid of industrial microorganisms. Presented at the FEMS Symposium "Novel Methods and Standardization in Microbiology", Košice (Slovakia) 1996. Part of this study was conducted with sponsoring from theEU Commission (project CT9302540).  相似文献   

16.
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.  相似文献   

17.
合成生物学技术的快速发展极大提升了微生物细胞工厂的构建能力,为化学品的绿色高效生产提供了重要策略。然而,微生物细胞难以耐受高强度工业环境、抗逆性差,成为了限制其生产性能的关键因素。适应性进化是一种人为施加定向选择压力,使微生物经过长期或短期驯化,获得适应特定环境的表型或生理性能的重要方法。近年来,随着微流控、生物传感器、组学分析等技术的发展,适应性进化为提升微生物细胞在工业环境下的生产性能奠定了基础。本文论述了适应性进化的关键技术及在提高微生物细胞工厂环境耐受性和生产效率方面的重要应用,并展望了适应性进化实现微生物细胞工厂在工业环境下高效运行的重要前景。  相似文献   

18.
杨雄州  姚国强  于洁  张和平 《微生物学报》2022,62(11):4176-4187
发酵工业作为生物技术产业的重要组成部分,在我国工业结构中占据了极大比重,而在工业发酵后期菌体代谢物、中和剂以及补料物的累积使微生物受到极大的渗透胁迫,严重影响了细胞生长及目标产物代谢,致使发酵产量与效率偏低。本文主要针对高渗胁迫下微生物的细胞结构、应答途径、基因、蛋白、代谢、分裂机制进行综述与分析,并以微生物菌种特性结合工业发酵技术为改良思路,从菌种改良、外源添加保护剂、改良中和剂、去除渗透抑制因子、膜过滤技术等方面找寻潜在渗透保护措施,以期为发酵行业生产力水平的提升、节能减排降耗提供参考。  相似文献   

19.
Microbes contribute to geochemical cycles in the ecosystem. They also play important roles in biodegradation and bioremediation of contaminated environments, and have great potential in energy conversion and regeneration. Up to date, at least 150 genomes of non-pathogenic microbes have been sequenced, of which, the majority are bacteria from various environments or of industrial uses. The emerging field ‘metagenomics’ in combination with the high-throughput sequencing technology offers opportunities to discover new functions of microbes in the environment on a large scale, and has become the ‘hot spot’ in the field of environmental microbiology. Seven genomes of bacteria from various extreme environments, including high temperature, high and low pressure, and extreme acidic regions, have been sequenced by researchers in China, leading to the discovery of metabolic pathways, genetic functions and new enzymes, which are related to the niches those bacteria occupy. These results were published in Nature, PNAS, Genome Research and other top international journals. In the meantime, several groups in China have started ‘metagenomics’ programs. The outcomes of these researches are expected to generate a considerable number of novel findings, taking Chinese researchers to the frontier of genomics for environmental and industrial microorganisms. Supported by the National High-tech Research Development Program of China (Grant No. 2007AA02Z106, 2007AA021303 and 2007AA020703) and the National Natural Science Foundation of China (Grant No. 30530010)  相似文献   

20.
郝小明  陈博  安泰 《生物工程学报》2015,31(8):1151-1161
工业微生物在发酵生产过程中会面对发酵环境和自身产生的各类酸性物质,而这些酸性物质会影响工业微生物的生长和代谢,即产生酸胁迫。微生物通过调控胞内质子浓度、保护和修复生物大分子、改变细胞膜组分以及整体水平调控等耐受机制来应对酸胁迫。结合酸胁迫的各种耐受机制,利用自然筛选和人工改造的方法提高工业微生物的抗酸胁迫能力,为构建出更能适应工业生产条件的菌株提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号