首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and biological evaluation are described of seven new analogues (3-9) of two potent thymidylate synthase inhibitors, 10-propargyl-5,8-dideazafolate (1) and its 2-methyl-2-deamino congener ICI 198583 (2). While the new compunds 3 and 4 were analogues of 1 and 2, respectively, containing a p-aminobenzenesulfonyl residue in place of the p-aminobenzoic acid residue, the remaining 5 new compounds were analogues of 4 with the L-glutamic acid residue replaced by glycine (5), L-valine (6), L-alanine (7), L-phenylglycine (8) or L-norvaline (9). The new analogues were tested as inhibitors of thymidylate synthases isolated from tumour (Ehrlich carcinoma), parasite (Hymenolepis diminuta) and normal tissue (regenerating rat liver) and found to be weaker inhibitors than the parent 10-propargyl-5,8-dideazafolic acid. Selected new analogues, tested as inhibitors of growth of mouse leukemia L 5178Y cells, were less potent than the parent 10-propargyl-5,8-dideazafolic acid. Substitution of the glutamyl residue in compound 4 with L-norvaline (9) resulted in only a 5-fold stronger thymidylate synthase inhibitor, but a 40-fold weaker cell growth inhibitor.  相似文献   

2.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

3.
To define the inhibitory requirements of mammalian collagenase, several N-substituted amide and peptide derivatives of the mercaptomethyl analogue of leucine, 2-[(R,S)mercaptomethyl]-4-methylpentanoic acid (H psi[SCH2]-DL-leucine), were synthesized and tested as inhibitors of pig synovial collagenase with soluble type I collagen as substrate. H psi[SCH2]-DL-leucine (IC50 = 320 microM) was about 10 times more potent than the beta-mercaptomethyl compound, N-acetylcysteine. The amide of H psi[SCH2]-DL-leucine was six times more potent than the parent thiol acid. Aliphatic N-substituted amides were less potent than the unsubstituted amide, whereas the N-benzyl amide was slightly more potent. Dipeptides, particularly those with an aromatic group at P2', were up to 20-fold more potent, while tripeptides with an aromatic L-amino acid at P2' and Ala-NH2 at P3' were up to 2200 times more potent than H psi[SCH2]-DL-leucine. The resolved diastereomers of H psi[SCH2]-DL-Leu-Phe-Ala-NH2 inhibited by 50% at 0.3 and 0.04 microM, respectively. The most potent inhibitor synthesized, an isomer of H psi[SCH2]-DL-Leu-L-3-(2'-naphthyl)alanyl-Ala-NH2, exhibited an IC50 of 0.014 microM, a value about 300 times less than similar thiol-based analogues of the P'-cleavage sequence of type I collagen, H psi[SCH2]-DL-Leu-Ala-Gly-Gln-. These structure-function studies establish within the present series of compounds that the most effective inhibitors of mammalian collagenase are not closely related to the P2'-P3' elements of the cleavage site of the natural substrate but rather have an aromatic group at the P2' position and Ala-NH2 at the P3' position.  相似文献   

4.
N-[N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithinyl]-L-phenylalanine (1), a carboxypeptidase A (CPA) cleavable prodrug was synthesized for use in an antibody directed strategy to improve the therapeutic selectivity of N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (2), an extremely potent nonpoly-glutamatable DHFR inhibitor which is also highly cytotoxic. Compound 1 was shown by HPLC analysis to give a >99% yield of 2 upon incubation with bovine CPA (bCPA) for 20 min at 25 degrees C. In a spectrophotometric kinetic assay with 50 microM dihydrofolate as the competing substrate in the presence of 65 microM NADPH, 1+bCPA stoichiometrically inhibited recombinant human DHFR (rhDHFR) with a K(i) of 0.35 pM. In contrast, 1 without bCPA was a poor inhibitor of rhDHFR (K(i)>10 microM). In a 72 h growth inhibition assay against cultured CCRF-CEM human leukemic lymphoblasts, the growth inhibitory activities of 1+bCPA, 2+bCPA, and 2 alone were the same (IC(50) 1.3-1.4 nM), whereas 1 in the absence of bCPA was >100-fold less potent (IC(50) 155 nM).  相似文献   

5.
A number of 2-(furan-2-yl)-4-phenoxyquinoline derivatives have been synthesized and evaluated for anti-inflammatory evaluation. 4-[(2-Furan-2-yl)quinolin-4-yloxy]benzaldehyde (8), with an IC(50) value of 5.0 microM against beta-glucuronidase release, was more potent than its tricyclic furo[2,3-b]quinoline isomer 3a (>30 microM), its 4'-COMe counterpart 7 (7.5 microM), and its oxime derivative 13a (11.4 microM) and methyloxime derivative 13b (>30 microM). For the inhibition of lysozyme release, however, oxime derivative 12a (8.9 microM) and methyloxime derivative 12b (10.4 microM) are more potent than their ketone precursor 7 and their respective tricyclic furo[2,3-b]quinoline counterparts 4a and 4b. Among them, 4-[4-[(2-furan-2-yl)-quinolin-4-yloxy]phenyl]but-3-en-2-one (10) is the most active against lysozyme release with an IC(50) value of 4.6 microM, while 8 is the most active against beta-glucuronidase release with an IC(50) value of 5.0 microM. (E)-1-[3-[(2-Furan-2-yl)quinolin-4-yloxy]phenyl] ethanone oxime (11a) is capable of inhibiting both lysozyme and beta-glucuronidase release with IC(50) values of 7.1 and 9.5 microM, respectively. For the inhibition of TNF-alpha formation, 1-[3-[(2-furan-2-yl)quinolin-4-yloxy]phenyl]ethanone (6) is the most potent with an IC(50) value of 2.3 microM which is more potent than genistein (9.1 microM). For the inhibitory activity of fMLP-induced superoxide anion generation, 11a (2.7 microM), 11b (2.8 microM), and 13b (2.2 microM) are three of the most active. None of above compounds exhibited significant cytotoxicity.  相似文献   

6.
A series of 17 novel 2-amino-4-oxo-5-[(substituted phenyl)thio]pyrrolo[2,3-d]pyrimidines were synthesized as potential inhibitors of thymidylate synthase (TS) and as antitumor agents. The analogues contain a variety of electron withdrawing substituents on the phenyl ring of the side chain and were evaluated as inhibitors of human TS (hTS) and Escherichia coli TS and of human and E. coli dihydrofolate reductase (DHFR). The analogues 14, 17, and 18 were potent inhibitors of hTS with IC50 values of 0.28, 0.21, and 0.22 microM, respectively, and were more potent than the clinically used ZD1694, 2 and LY231514, 3 against human TS.  相似文献   

7.
Optically active N-acyl-5,5-dimethyl-1,2,3,4a,5,10b-hexahydro-[1]benzopyrano[3,4-b][1,4]oxazine-9-carbonitriles 2-22 were synthesized as rigid analogues of cromakalim. The (4aR, 10bR)-N-benzoyl derivative (-)-11 was identified as a bladder-selective KCO (IC50, bladder = 8.2 microM, C50, portal vein = 34.5 microM). Among the analogues of 11 with substitution on the benzoyl moiety, the 3-methyl analogue (-)-14 showed highly potent and selective activity at portal vein (IC50, bladder = 279 microM, IC50, portal vein = 0.54 microM). The 4-bromo analogue (-)-19 (IC50, bladder = 2.0 microM, IC50, portal vein = 8.1 microM) and the 4-hydroxy analogue (-)-21 (IC50, bladder = 3.8 microM, IC50, portal vein = 75 microM) showed enhanced activity at the bladder, while maintaining unprecedented bladder selectivity in vitro. The N-benzenesulfonyl analogue (-)-22, a bioisoster of (-)-11, showed similar activity at the bladder with enhanced selectivity (IC50, bladder = 11.6 microM, IC50, portal vein = 120 microM).  相似文献   

8.
1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) is known to cause a destruction of the dopaminergic nigrostriatal pathway in certain animal species including mice. MPTP and some structurally related analogs were tested in vitro for their capacity to inhibit the uptake of [3H]3,4-dihydroxyphenylethylamine-([3H]DA), [3H]5-hydroxytryptamine ([3H]5-HT), and [3H]gamma-aminobutyric acid [( 3H]GABA) in mouse neostriatal synaptosomal preparations. MPTP was a very potent inhibitor of [3H]5-HT uptake (IC50 value 0.14 microM), a moderate inhibitor of [3H]DA uptake (IC50 value 2.6 microM), and a very weak inhibitor of [3H]GABA uptake (no significant inhibition observed at 10 microM MPTP). In other experiments, MPTP caused some release of previously accumulated [3H]DA and [3H]5-HT, but in each case MPTP was considerably better as an uptake inhibitor than as a releasing agent. The 4-electron oxidation product of MPTP, i.e., 1-methyl-4-phenyl-pyridinium iodide (MPP+), was a very potent inhibitor of [3H]DA uptake (IC50 value 0.45 microM) and of [3H]5-HT uptake (IC50 value 0.78 microM) but MPP+ was a very weak inhibitor of [3H]GABA uptake. These data may have relevance to the neurotoxic actions of MPTP.  相似文献   

9.
Mast cells, neutrophils and macrophages are important inflammatory cells that have been implicated in the pathogenesis of acute and chronic inflammatory diseases. To explore a novel anti-inflammatory agent, we have synthesized certain 4-anilinofuro[2,3-b]quinoline and 4-phenoxyfuro[2,3-b]quinoline derivatives and evaluated their anti-inflammatory activities by reaction of 3,4-dichlorofuro[2,3-b]quinoline with appropriate Ar-NH(2) or Ar-OH. Compounds 6a and 15 were proved to be more potent than the reference inhibitor, mepacrine for the inhibition of rat peritoneal mast cell degranulation with IC(50) values of 6.5 and 16.4 microM, respectively. Compounds 2b, 6a, 10, and 15 also showed potent inhibitory activity (IC(50)=7.2-29.4 microM) for the secretion of lysosomal enzyme and beta-glucuronidase from neutrophils. These results also indicated that oxime derivatives are more potent than the respective ketone precursors (6a> or =2a; 7a> or =3), and the substituent such as Me at the oxime decreased inhibitory activity (6a> or =6b; 7a> or =7b). Among these derivatives, compound 6a showed the most potent activity with IC(50) values of 6.5-11.6 microM for the inhibition of mast cell degranulation and neutrophil degranulation.  相似文献   

10.
A novel class of 1-[4-(1H-benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]-ureas are described as potent inhibitors of heparanase. Among them are 1,3-bis-[4-(1H-benzoimidazol-2-yl)-phenyl]-urea (7a) and 1,3-bis-[4-(5,6-dimethyl-1H-benzoimidazol-2-yl)-phenyl]-urea (7d), which displayed good heparanase inhibitory activity (IC(50) 0.075-0.27 microM). Compound 7a showed good efficacy in a B16 metastasis model.  相似文献   

11.
Two side-chain cyclic lactam analogues of the 4-11 fragment of alpha-melanocyte-stimulating hormone (alpha-MSH), Ac-[Nle4,D-Orn5,Glu8]alpha-MSH4-11-NH2 and Ac-[Nle4,D-Orn5,D-Phe7,Glu8]alpha-MSH4-11-NH2, were prepared on p-methylbenzhydrylamine resin by using a combination of N alpha-Boc and N alpha-Fmoc synthetic strategies with diphenyl phosphorazidate mediated cyclization. The melanotropin activities of these two analogues were examined and compared relative to those of alpha-MSH, Ac-[Nle4]alpha-MSH4-11-NH2, and Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the frog (Rana pipiens) skin bioassay, the L-Phe7 17-membered ring cyclic analogue was slightly more potent than the linear Ac-[Nle4]alpha-MSH4-11-NH2 and exhibited prolonged melanotropic bioactivity (greater than or equal to 4 h). In this same assay, the D-Phe7 cyclic analogue was more than 100-fold less potent than the L-Phe cyclic analogue and was 10,000 times less potent than linear Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the lizard skin (Anolis carolinensis) bioassay, the L-Phe7 cyclic analogue was 100-fold less potent than Ac-[Nle4]alpha-MSH4-11-NH2, while the D-Phe7 cyclic analogue was 10,000-fold less potent than both Ac-[Nle4]alpha-MSH4-11-NH2 and the D-Phe7 linear derivative Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. The solution conformation of these two cyclic analogues in dimethyl sulfoxide-d6 was examined by 1D and 2D 500-MHz 1H NMR spectroscopy. Our analysis suggests an H bond stabilized C10 (or C13) turn for the D-Phe7 cyclic structure while the L-Phe7 analogue is more conformationally flexible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In this study we report the in vitro inhibition of leukotriene synthesis in calcium ionophore (A23187)-stimulated, intact human blood neutrophils by AHR-5333. The results showed that AHR-5333 inhibits 5-HETE, LTB4 and LTC4 synthesis with IC50 values of 13.9, 13.7 and 6.9 microM, respectively. Further examination of the effect of AHR-5333 on individual reactions of the 5-lipoxygenase pathway (i.e. conversion of LTA4 to LTB4, LTA4 to LTC4, and arachidonic acid to 5-HETE) showed that this agent was not inhibitory to LTA4 epoxyhydrolase and glutathione-S-transferase activity in neutrophil homogenates. However, conversion of arachidonic acid (30 microM) to 5-HETE was half maximally inhibited by 20 microM AHR-5333 in the cell-free system. The inhibition of LTB4 and LTC4 formation in intact neutrophils by AHR-5333 appears to be entirely due to a selective inhibition of 5-lipoxygenase activity and an impaired formation of LTA4, which serves as substrate for LTA4 epoxyhydrolase and glutathione-S-transferase. AHR-5333 did not affect the transformation of exogenous arachidonic acid to thromboxane B2, HHT and 12-HETE in preparations of washed human platelets, indicating that this agent has no effect on platelet prostaglandin H synthase, thromboxane synthase and 12-lipoxygenase activity. The lack of inhibitory activity of AHR-5333 on prostaglandin H synthase activity was confirmed with microsomal preparations of sheep vesicular glands.  相似文献   

13.
The 2,3-dihydrospiro[4H-thiopyrano[2,3-b]pyridin-4,4'-imidazolidine]-2',5'-dione 3 and its 7-methyl analogue 4 were synthesized and tested for their ability to inhibit aldose reductase (ALR2). To expand the structure-activity relationships, the sulfone 5 and the acetic acid derivative 7 were also prepared and tested. Compounds 3 and 4 proved to be potent ALR2 inhibitors, with IC50 values in the submicromolar range (0.96 and 0.94 microM, respectively) similar to that of sorbinil (0.65 microM). Moreover, compound 3 was found to be highly potent in preventing cataract development in severely galactosemic rats, like tolrestat, when administered as an eyedrop solution. Docking simulations of both R- and S-isomers of 3 into the ALR2 crystal structure were carried out to guide, prospectively, the design of new analogues.  相似文献   

14.
Mast cells, neutrophils and macrophages are important inflammatory cells that have been implicated in the pathogenesis of acute and chronic inflammatory diseases. To explore a novel anti-inflammatory agent, we have synthesized certain 9-phenoxyacridine and 4-phenoxyfuro[2,3-b]quinoline derivatives and evaluated their anti-inflammatory activities. The title compounds were synthesized by reaction of either 9-chloroacridine or 3,4-dichlorofuro[2,3-b]quinoline with appropriate Ar-OH and their anti-inflammatory activities were studied on inhibitory effects on the activation of mast cells, neutrophils and macrophages. Four 9-(4-formylphenoxy)acridine derivatives 2b-2e were proved to be more potent than the reference inhibitor, mepacrine for the inhibition of rat peritoneal mast cell degranulation with IC(50) values of 6.1, 5.9, 13.5, and 4.7 microM, respectively. Compounds 2c, 3b, 3c, and 5a also showed potent inhibitory activity (IC(50)=4.3-18.3 microM) for the secretion of lysosomal enzyme and beta-glucuronidase from neutrophils. In addition, 2d, 3a, and 4 inhibited TNF-alpha formation from the N9 cells (the brain resident macrophages) with IC(50) vales less then 10 microM. These results indicated that acridine derivatives exhibited more potent anti-inflammatory activities than their respective furo[2,3-b]quinoline counterparts (4 vs 9; 5a vs 10a; 5b vs 10b).  相似文献   

15.
3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 5 (MGS0039) is a highly selective and potent group II metabotropic glutamate receptor (mGluR) antagonist (antagonist activities for mGluR2; IC50=20.0 nM, mGluR3; IC50=24.0 nM) and is detected in both plasma (492 ng/mL) and brain (13.2 ng/g) at oral administration of 10 ng/mL [J. Med. Chem.2004, 47, 4750], but the oral bioavailability of 5 was 10.9%. In order to improve the oral bioavailability of 5, prodrugs of 5 were discovered by esterification of carboxyl group on C6-position of bicyclo[3.1.0]hexane ring. Among these compounds, 6-alkyl esters exhibited approximately 10-fold higher concentrations of 5 in the plasma and brain of rats after oral administration (e.g., ethyl ester of 5; plasma, Cmax=20.7+/-1.3 microM) compared to oral administration of 5 (plasma, Cmax=2.46+/-0.62 microM). 3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 6-heptyl ester (7ao), a prodrug of MGS0039, showed antidepressant-like effects in rat forced swimming test and mouse tail suspension test following oral administration. Moreover, following oral administration of 7ao in mice, high concentrations of MGS0039 were detected in both the brain and plasma, while 7ao was barely detected. In this paper, we report the synthesis, in vitro metabolic stabilities, and pharmacokinetic profiles of the prodrugs of 5, and the antidepressant-like effects of 7ao.  相似文献   

16.
The preparation of both enantiomers of 8-[1-(2,4-dichlorophenyl)-2-imidazol-1-yl-ethoxy] octanoic acid heptyl ester (JM-8686), a potent inhibitor of allene oxide synthase, has been achieved using 2,4-dichlorophenacyl bromide as a starting material. The key step was the asymmetric reduction of 1-(2,4-dichlorophenyl)-2-imidazol-1-yl-ethanone with chiral BINAL-H. The products were purified by chiral high-performance liquid chromatography (HPLC) to afford pure (R)-JM-8686 and (S)-JM-8686. The inhibitory activities and binding affinities of these enantiomers toward allene oxide synthase were determined. We found that the inhibition potency of (R)-JM-8686 is approximately 200 times greater than that of (S)-JM-8686, with IC(50) values of approximately 5+/-0.2 nM and 950+/-18 nM, respectively. The dissociation constants of (R)-JM-8686 and (S)-JM-8686 with respect to the recombinant allene oxide synthase were approximately 1.4+/-0.3 microM and 4.8+/-0.6 microM, respectively.  相似文献   

17.
Acyclic noncompetitive antagonists of ionotropic gamma-aminobutyric acid (GABA) receptors, bearing an ester or ether linkage, were designed, synthesized, and assayed for their inhibition of the specific binding of [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a radiolabeled noncompetitive antagonist, to rat brain and housefly head membranes. 5-[4-(3,3-Dimethylbutoxycarbonyl)phenyl]-4-pentynoic acid (DBCPP), a butyl benzoate analogue, was found to competitively inhibit the binding of [3H]EBOB in rat brain membranes, with an IC50 of 88 nM. The potency conferred by the p-substituent decreased in the order C(triple bond)C(CH2)2COOH > C(triple bond)C(CH2)2COOCH3 > C(triple bond) CH > Br. Pentyl phenyl ethers were equally potent compared with butyl benzoates, while phenyl pentanoates and benzyl butyl ethers were less pont. These compounds were generally less active in housefly head membranes than in rat brain membranes. The introduction of an isopropyl group into the 1-position of the 3,3-dimethylbutyl group of a butyl benzoate and two benzyl butyl ethers caused an increase in potency in housefly GABA receptors, whereas this modification at the corresponding position of other compounds led to an unchanged or decreased potency. In the case of rat receptors, this modification resulted in a decrease in potency except for a phenyl pentanoate. To confirm that DBCPP interferes with GABA receptor function, we performed whole-cell patch clamp experiments with rat dorsal root ganglion neurons in the primary culture. Repeated co-applications of GABA and DBCPP suppressed GABA-induced whole-cell currents with an IC50 of 0.54 microM and a Hill coefficient of 0.7. These findings indicate that DBCPP and its derivatives inhibit ionotropic GABA receptors by binding to the EBOB site and that there might be structural difference in the noncompetitive antagonist-binding site between rat and housefly GABA receptors.  相似文献   

18.
We have recently reported the discovery of orally active sulfonylalkylamide Factor Xa (FXa) inhibitors, as typified by compound 1 (FXa IC(50)=0.061 microM). Since the pyridylpiperidine moiety was not investigated in our previous study, we conducted detailed structure-activity relationship studies on this S4 binding element. This investigation led to the discovery of piperazinylimidazo[1,2-a]pyridine 2b as a novel and potent FXa inhibitor (FXa IC(50)=0.021 microM). Further modification resulted in the discovery of 2-hydroxymethylimidazo[1,2-a]pyridine 2e (FXa IC(50)=0.0090 microM), which was found to be a selective and orally bioavailable FXa inhibitor with reduced CYP3A4 inhibition.  相似文献   

19.
Cocaine is a potent stimulant of the central nervous system. Its reinforcing and stimulant properties have been associated with inhibition of the dopamine transporter (DAT) on presynaptic neurons. In the search for medications for cocaine abuse, we have prepared 2-carbomethoxy-3-aryl-8-thiabicyclo[3.2.1]octane analogues of cocaine. We report that this class of compounds provides potent and selective inhibitors of the DAT and SERT. The selectivity resulted from reduced activity at the SERT. The 3beta-(3,4-dichlorophenyl) analogue inhibits the DAT and SERT with a potency of IC(50)=5.7 nM and 8.0 nM, respectively. The 3-(3,4-dichlorophenyl)-2,3-unsaturated analogue inhibits the DAT potently (IC(50)=4.5 nM) and selectively (>800-fold vs SERT). Biological enantioselectivity of DAT inhibition was limited for both the 3-aryl-2,3-unsaturated and the 3alpha-aryl analogues (2-fold), but more robust (>10-fold) for the 3beta-aryl analogues. The (1R)-configuration provided the eutomers.  相似文献   

20.
A retro-inverso analogue of the pseudosubstrate sequence, Arg-Phe-Ala-Arg-Lys-Gly-Ala25-Leu-Arg-Gln-Lys-Asn-Val (1), found in the regulatory domain of all protein kinase C (PKC) subspecies was synthesized. It shows to be an inhibitor (IC50 = 31 microM) of the phosphorylation, by PKC, of [Ala9.10,Lys11.12] glycogen synthase (1-12). Its analogue in which D Ala25 is replaced by D Ser is not a PKC substrate, but a more potent inhibitor, competitive with the peptidic substrate (IC50 = 5 microM, Ki = 2 microM). Both retro-inverso peptides are highly specific for PKC versus adenosine cAMP-dependent protein kinase (PKA) and are totally stable towards proteolysis by trypsin or pronase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号