首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration.  相似文献   

2.
A factor which markedly activates Ca2+-dependent thiol protease (calpain) is associated with Triton X-100-insoluble materials, presumably structural elements such as cytoskeletons, of bovine brain microsomal fraction. This factor is extracted with 0.6 M KC1, and purified partially by sucrose density gradient centrifugation and hydroxyapatite column chromatography. The factor appears to be a heat-stable protein with an approximate Mr of 15 000. With casein as substrate this factor activates both calpain I and calpain II several-fold up to more than 10- fold without alteration of their affinity to Ca2+. Calmodulin is unable to substitute for this factor. A similar factor is associated with human platelet insoluble materials.  相似文献   

3.
Hoang MV  Nagy JA  Fox JE  Senger DR 《PloS one》2010,5(10):e13612

Background

Successful neovascularization requires that sprouting endothelial cells (ECs) integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF), thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates.

Methodology/Principal Findings

In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN) calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT) calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs), increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks.

Conclusions/Significance

These findings implicate VEGF-induction of calpain activity and impairment of cytoskeletal dynamics in the failure of VEGF-induced neovessels to form and integrate properly. Accordingly, calpain represents an important target for rectifying key vascular defects associated with pathological angiogenesis and for improving therapeutic angiogenesis with VEGF.  相似文献   

4.
To investigate the distribution of the tau and HMW microtubule-associated proteins (MAPS) and their relationship to microtubules in vivo, we have examined a wide variety of avian and mammalian cell types by immunofluorescence with antisera to these two proteins. Anti-HMW serum stains cytoplasmic microtubules in all mammalian cell types so far examined. However, anti-tau serum did not stain cytoplasmic microtubules in rat glial cells or in pig kidney cells. In mammalian neurons, fibroblasts and neuroblastoma cells, the staining of microtubules with both sera was similar. Anti-HMW serum did not stain primary cilia or cilia on isolated tracheal epithelial cells, whereas anti-tau serum did stain these ciliary microtubules. We believe these results indicate that some types of microtubules may be associated with only the tau or the HMW protein, whereas others may be associated with both tau and HMW protein. With respect to avian cells, anti-HMW serum did not stain microtubules in any of the three cell types examined, whereas the anti-tau serum stained them in two cell types. Furthermore, double diffusion tests indicated that anti-pig tau serum will precipitate both pig brain tau and tau protein isolated from chick brain, whereas anti-HMW serum will precipitate only pig brain and not chick brain HMW protein. We believe tau protein is antigenically similar in both avian and mammalian cells, whereas the HMW protein from these two sources is antigenically distinct.  相似文献   

5.
A cold-labile fraction of microtubules with unusual properties was isolated from the brain of the Atlantic cod (Gadus morhua). The yield was low, approximately six times lower than that for bovine brain microtubules. This was mainly caused by the presence of a large amount of cold-stable microtubules, which were not broken down during the disassembly step in the temperature-dependent assembly-disassembly isolation procedure and were therefore lost. The isolated cold-labile cod microtubules contained usually only a low amount of microtubule-associated proteins (MAPs). Three high molecular mass proteins were found, of which one was recognized as MAP2. Cod MAP2 differed from mammalian brain MAP2; it was not heat stable and had a slightly higher molecular mass. In contrast to mammalian MAPs, MAP1 was not found in the cold-labile fraction of microtubules. A new heat-labile MAP of higher molecular mass (400 kilodaltons) was however present, as well as a heat-stable protein of slightly lower molecular mass than MAP2. These MAPs showed similar tubulin-binding characteristics as bovine brain MAPs, since they coassembled with taxol-assembled bovine brain microtubules consisting of pure bovine tubulin. In spite of the fact that Ca2+ bound equally to cod and porcine tubulins, it did not inhibit cod microtubule assembly even at high concentrations (greater than 1 mM). In contrast, rings, spirals, and macrotubules were formed. The results show that there are major differences between this fraction of cod microtubules and microtubules from mammalian brain.  相似文献   

6.
A heat-stable microtubule-associated protein (MAP) with molecular weight of 190,000, termed 190-kD MAP, was purified from bovine adrenal cortex. This MAP showed the same level of ability to promote tubulin polymerization as did MAP2 and tau from mammalian brains. Relatively high amounts of 190-kD MAP could bind to microtubules reconstituted in the presence of taxol. At maximum 1 mol of 190-kD MAP could bind to 2.3 mol of tubulin. 190-kD MAP was phosphorylated by a cAMP-dependent protein kinase prepared from sea urchin spermatozoa and by protein kinase(s) present in the microtubule protein fraction prepared from mammalian brains. The maximal numbers of incorporated phosphate were approximately 0.2 and approximately 0.4 mol per mole of 190-kD MAP, respectively. These values were lower than that of MAP2, which could be heavily phosphorylated by the endogenous protein kinase(s) up to 5 mol per mole of MAP2 under the same assay condition. 190-kD MAP had no effects on the low-shear viscosity of actin and did not induce an increase in turbidity of the actin solution. It was also revealed that 190-kD MAP does not cosediment with actin filaments. These data clearly show that, distinct from MAP2 and tau, this MAP does not interact with actin. Electron microscopic observation of the rotary-shadowed images of 190-kD MAP showed the molecular shape to be a long, thin, flexible rod with a contour length of approximately 100 nm. Quick-freeze, deep-etch replicas of the microtubules reconstituted from 190-kD MAP and brain tubulin revealed many cross-bridges connecting microtubules with each other.  相似文献   

7.
Calpain I and II (EC 3.4.22.17) are Ca2+-activated neutral thiol-proteases. Isolated brain tubulin and microtubule-associated proteins were found to be good substrates for proteolytic degradation by brain calpain I and II. The assembly of microtubules was totally inhibited when the calpains were allowed to act on microtubule proteins initially, and a complete disassembly was found after addition of calpain I to assembled microtubules. The high-molecular weight microtubule-associated proteins were degraded within a few minutes following incubation with calpain as shown by SDS-polyacrylamide gel electrophoresis and electron microscopy. When calpain was added to pre-formed microtubules, either in the presence or in the absence of microtubule-associated proteins, the proteolysis was significantly reduced. When tubulin was pre-assembled by taxol, the formation of proteolytic fragments was decreased indicating that assembly alters the availability of tubulin sites for proteolytic cleavage by calpain. Digested tubulin spontaneously formed aberrant polymers. No considerable change of apparent net charge was seen, thus indicating that calpain cleaves off fragments containing neutral amino acid residues and/or that the fragments of tubulin remain associated as an entity with the same charge as native tubulin. The results suggest that the calpains act as irreversible microtubule regulators.  相似文献   

8.
Microtubule accessory proteins were isolated from porcine brain microtubules by phosphocellulose chromatography, and the high molecular weight protein (HMW protein), purified from this microtubule-associated fraction by electrophoretic elution from SDS gels, was used to raise antisera in rabbits. In agarose double diffusion tests, the antiserum obtained forms precipitin lines with purified HMW protein but not with tau protein or tubulin. When rat glial cells (strain C6) are examined by indirect immunofluorescence, this serum specifically stains a colchicine-sensitive filamentous cytoplasmic network in interphase cells, a network indistinguishable from that seen when cells are treated with antitubulin serum. In dividing cells, specific staining of the mitotic spindle and the stem body is observed with the antiserum to HMW protein. These studies indicate that HMW protein, like tau protein, is associated with microtubules in intact cells.  相似文献   

9.
Microtubule associated proteins MAP1B and MAP2 are important components of the neuronal cytoskeleton. During early development of the brain, MAP1B (340 kDa) is present as two isoforms that differ in their level of phosphorylation, while MAP2 is expressed as a single high molecular weight isoform (MAP2B, 280 kDa) and a low molecular weight form (MAP2C, 70 kDa). In this study we examined and compared the sensitivities of MAP1B and MAP2, obtained from MT preparations and brain homogenates of young rats, to degradation by calcium-activated neutral protease, calpain II. We found that in MAPs prepared from microtubules the two isoforms of MAP1B had comparable sensitivity to calpain-mediated proteolysis. Similarly, the high and low molecular weight forms of MAP2 were equally sensitive to digestion by calpain. However, although both MAPs were very susceptible to calpain-mediated proteolysis, MAP1B was more resistant to degradation by calpain than MAP2. Furthermore, the endogenous degradation of MAPs in neonate brain homogenates was calcium-dependent and inhibited by leupeptin, and the pattern of degradation products for MAP1B and MAP2 was similar to that of calpain-mediated proteolysis. These data suggest that calpain can play a role in the regulation of MAPs levels during brain development, in relation to normal neuronal differentiation and disorders associated with neurodegeneration.  相似文献   

10.
11.
Cyclin-dependent kinase 5 (CDK5) is a unique CDK, the activity of which can be detected in postmitotic neurons. To date, CDK5 purified from mammalian brains has always been associated with a truncated form of the 35-kDa major brain specific activator (p35, also known as nck5a) of CDK5, known as p25. In this study, we report that p35 can be cleaved to p25 both in vitro and in vivo by calpain. In a rat brain extract, p35 was cleaved to p25 by incubation with Ca(2+). This cleavage was inhibited by a calpain inhibitor peptide derived from calpastatin and was ablated by separating the p35.CDK5 from calpain by centrifugation. The p35 recovered in the pellet after centrifugation could then be cleaved to p25 by purified calpain. Cleavage of p35 was also induced in primary cultured neurons by treatment with a Ca(2+) ionophore and Ca(2+) and inhibited by calpain inhibitor I. The cleavage changed the solubility of the CDK5 active complex from the particulate fraction to the soluble fraction but did not affect the histone H1 kinase activity. Increased cleavage was detected in cultured neurons undergoing cell death, suggesting a role of the cleavage in neuronal cell death.  相似文献   

12.
Tau, a microtubule-associated protein enriched in the axon, is known to stabilize and promote the formation of microtubules during axonal outgrowth. Several studies have reported that tau was associated with membranes. In the present study, we further characterized the interaction of tau with membranous elements by examining its distribution in subfractions enriched in either Golgi or endoplasmic reticulum membranes isolated from rat brain. A subfraction enriched with markers of the medial Golgi compartment, MG160 and mannosidase II, presented a high tau content indicating that tau was associated with these membranes. Electron microscope morphometry confirmed the enrichment of this subfraction with Golgi membranes. Double-immunogold labeling experiments conducted on this subfraction showed the direct association of tau with vesicles labeled with either an antibody directed against MG160 or TGN38. The association of tau with the Golgi membranes was further confirmed by immunoisolating Golgi membranes with an anti-tau antibody. Immunogold labeling confirmed the presence of tau on the Golgi membranes in neurons in vivo. Overexpression of human tau in primary hippocampal neurons induced the formation of large Golgi vesicles that were found in close vicinity to tau-containing microtubules. This suggested that tau could serve as a link between Golgi membranes and microtubules. Such role for tau was demonstrated in an in vitro reconstitution assay. Finally, our results showed that some tau isoforms present in the Golgi subfraction were phosphorylated at the sites recognized by the phosphorylation-dependent antibodies PHF-1 and AT-8.  相似文献   

13.
The distribution of tau in the mammalian central nervous system   总被引:68,自引:22,他引:68       下载免费PDF全文
We have determined the biochemical and immunocytochemical localization of the heterogeneous microtubule-associated protein tau using a monoclonal antibody that binds to all of the tau polypeptides in both bovine and rat brain. Using immunoblot assays and competitive enzyme-linked immunosorbent assays, we have shown tau to be more abundant in bovine white matter extracts and microtubules than in extracts and microtubules from an enriched gray matter region of the brain. On a per mole basis, twice-cycled microtubules from white matter contained three times more tau than did twice-cycled microtubules from gray matter. Immunohistochemical studies that compared the localization of tau with that of MAP2 and tubulin demonstrated that tau was restricted to axons, extending the results of the biochemical studies. Tau localization was not observed in glia, which indicated that, at least in brain, tau is neuron specific. These observations indicate that tau may help define a subpopulation of microtubules that is restricted to axons. Furthermore, the monoclonal antibody described in this report should prove very useful to investigators studying axonal sprouting and growth because it is an exclusive axonal marker.  相似文献   

14.
Although microtubules are known to play an important role in many cellular processes, they have been virtually neglected in fish. In this report, microtubule-associated proteins (MAPs) in fish (teleost) were characterized using antibodies (Abs) directed against the mammalian MAPs tau, MAP1A and B, and MAP 2. Two different populations of tau-like proteins (TLPs) were found in fish brain using the anti-tau Abs Tau-1, Tau-2, tau5', and tau3'. The TLPs that were recognized by Tau-1, Tau-2, and tau5' were (1) heat-stable; (2) the same molecular weight as mammalian TLPs: 59-62 kDa; (3) not enriched in microtubules prepared from catfish brain; and (4) localized to the cell body of neurons in fish brains. While the TLPs recognized by tau3' Abs were (1) heat-stable; (2) lower molecular weight than mammalian TLPs: 32-55 vs. 50-65 kDa; (3) enriched in microtubule fractions prepared from catfish brain, and (4) localized to the axons of neurons. These results are consistent with two different populations of TLPs being present in fish brains. While MAP2 was found to be approximately the same molecular weight, 250 kDa, in zebrafish and goldfish as in mammals and to be distributed to dendrites in the fish brain, both MAP1A and MAP1B were found to be about 25% the mass of their mammalian homologs. These results suggest that MAPS in fish have some characteristics similar to their mammalian counterparts, but also possess some unique properties that require further study to elucidate their function.  相似文献   

15.
The effects of cAMP-dependent protein kinase (cAMP-PK) phosphorylation on the degradation of the microtubule-associated protein tau by calpain were studied. Purified bovine brain tau that had been phosphorylated by cAMP-PK had a slower migration pattern on sodium dodecyl sulfate-polyacrylamide gels and a more acidic, less heterogeneous pattern on two-dimensional, nonequilibrium pH gradient electrophoresis (NEPHGE) gels compared with untreated tau. Phosphorylation of tau by cAMP-PK significantly inhibited its proteolysis by calpain compared with untreated tau. To our knowledge this is the first demonstration that phosphorylation of tau by a specific kinase results in increased resistance to hydrolysis by calpain. Tau dephosphorylated by alkaline phosphatase migrated more rapidly on sodium dodecyl sulfate-polyacrylamide gels and also showed an altered two-dimensional NEPHGE pattern. Dephosphorylation of tau had no effect on its susceptibility to calpain proteolysis, indicating that regulation of the susceptibility to calpain hydrolysis is due to the phosphorylation of a specific site(s). These results suggest a role for phosphorylation in regulating the degradation of tau. Abnormal phosphorylation could result in a protease-resistant tau population which may contribute to the formation of paired helical filaments in Alzheimer's disease.  相似文献   

16.
Calpain是钙依赖性中性蛋白酶 ,根据其对钙敏感性的不同 ,可分为m 和 μ calpain两型 .分别用不同浓度CaCl2 溶液孵育Wistar大鼠脑皮质匀浆液 ,并用蛋白质印迹和定量图像分析技术检测不同亚型calpain对tau蛋白的降解作用 .研究发现 :在 3 7℃用 1mmol/LCa2 孵育底物 15min ,可见tau蛋白明显降解 ,并在分子质量为 2 9ku处出现tau蛋白降解片段 ;当Ca2 浓度为 5mmol/L时 ,tau蛋白几乎全部被降解 ;这种tau蛋白降解可被calpain特异性抑制剂完全逆转 .进一步的研究发现 ,分别用 μ calpain抑制剂 (0 0 5μmol/Lcalpastatin) ,m calpain抑制剂 (10 0 μmol/LcalpaininhibitorⅣ )或总calpain抑制剂 (552 μmol/Lcalpeptin)与 1mmol/LCa2 共同孵育Wistar大鼠脑皮质匀浆液 ,Ca2 激活的tau蛋白降解分别被抑制8 6% ,92 5%和 97 8% .结果表明一定浓度的Ca2 可同时激活 μ calpain和m calpain ,这两种亚型calpain均参与降解tau蛋白 ,但m calpain的作用比 μ calpain更强  相似文献   

17.
Alzheimer's disease and other related neurodegenerative disorders known as tauopathies are characterized by the accumulation of abnormally phosphorylated and aggregated forms of the microtubule-associated protein tau. Several laboratories have identified a 17 kD proteolytic fragment of tau in degenerating neurons and in numerous cell culture models that is generated by calpain cleavage and speculated to contribute to tau toxicity. In the current study, we employed a Drosophila tauopathy model to investigate the importance of calpain-mediated tau proteolysis in contributing to tau neurotoxicity in an animal model of human neurodegenerative disease. We found that mutations that disrupted endogenous calpainA or calpainB activity in transgenic flies suppressed tau toxicity. Expression of a calpain-resistant form of tau in Drosophila revealed that mutating the putative calpain cleavage sites that produce the 17 kD fragment was sufficient to abrogate tau toxicity in vivo. Furthermore, we found significant toxicity in the fly retina associated with expression of only the 17 kD tau fragment. Collectively, our data implicate calpain-mediated proteolysis of tau as an important pathway mediating tau neurotoxicity in vivo.  相似文献   

18.
A microtubule-associated protein (MAP) with a molecular mass of 72-kDa that was purified from porcine brain by using its property of heat stability in a low pH buffer was characterized. Low-angle rotary shadowing revealed that the 72-kDa protein was a rodlike protein approximately 55-75 nm long. The 72-kDa protein bound to microtubules polymerized from phosphocellulose column-purified tubulin (PC-tubulin) with taxol and promoted the polymerization of PC-tubulin in the absence of taxol. Microtubules polymerized by the 72-kDa protein showed a tendency to form bundles of several microtubules. Quick-freeze, deep-etch electron microscopy revealed that the 72-kDa protein formed short crossbridges between microtubules. We performed peptide mapping to analyze the relationship of the 72-kDa protein to other heat-stable MAPs, and the results showed some resemblance of the 72-kDa protein to MAP2. Cross-reactivity with a monoclonal anti-MAP2 antibody further suggested that the 72-kDa protein and MAP2 are immunologically related. To study the relationship between the 72-kDa protein and MAP2C, a smaller molecular form of MAP2 identified in juvenile rat brain, we prepared the 72-kDa protein from rat brain by the same method as that used for porcine brain. The fact that the 72-kDa protein from juvenile rat brain was also stained with our monoclonal anti-MAP2 antibody also suggested that the 72-kDa protein is an MAP2C homologue of the porcine brain.  相似文献   

19.
We have studied the heterogeneity of the microtubule-associated tau proteins using tau-specific antibodies and two-dimensional electrophoresis. Both monoclonal and polyclonal antibodies to tau proteins recognize five bands in cow brain microtubule proteins run on sodium dodecyl sulfate (SDS)-polyacrylamide gels, with apparent molecular weights between 56,000 and 66,000. Immunoblots of cow brain microtubules separated on two-dimensional gels, using nonequilibrium pH gradient electrophoresis in the first dimension and SDS-gel electrophoresis in the second, reveal that greater than 30 isoforms of tau exist. The tau proteins vary in pI from 6.5 to 8.5, with the higher-molecular-weight forms being more acidic. The microheterogeneity of tau is not induced by cycling of microtubules, because two-dimensional immunoblots of tau from total brain are almost identical to those of tau from cycled tubules. Adult rat brain tau, which appears as three doublet bands on SDS gels, also exhibits considerable isoelectric heterogeneity, as does tau from 7-day-old rats, which appears as only one band on SDS gels. After dephosphorylation of cow brain tau with alkaline phosphatase, the highest-molecular-weight band disappears on SDS gels. On two-dimensional gels, the number of tau variants decreases by more than half after dephosphorylation, and the more basic species increase greatly in intensity. Preliminary experiments with tau labeled in vivo with 32PO4 also indicate that the more acidic tau proteins are the more highly phosphorylated forms. Thus, isoelectric heterogeneity of tau proteins exists at all ages and is due, at least in part to differences in the state of phosphorylation of tau isoforms.  相似文献   

20.
The microtubule-associated protein tau, which stimulates the assembly of alpha-beta tubulin heterodimers into microtubules, is abnormally phosphorylated in Alzheimer's disease (AD) brain and is the major component of paired helical filaments. In the present study, the levels of tau and abnormally phosphorylated tau were determined in brain homogenates of AD and age-matched control cases. A radioimmuno-slot-blot assay was developed, using a primary monoclonal antibody, Tau-1, and a secondary antibody, antimouse 125I-immunoglobulin G. To assay the abnormally phosphorylated tau, the blots were treated with alkaline phosphatase before immunolabeling. The levels of total tau were about eightfold higher in AD (7.3 +/- 2.7 ng/micrograms of protein) than in control cases (0.9 +/- 0.2 ng/micrograms), and this increase was in the form of the abnormally phosphorylated protein. These studies indicate that the abnormal phosphorylation--not a decrease in the level of tau--is a likely cause of neurofibrillary degeneration in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号