首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method of performing the laser-assisted end-to-side microvascular anastomosis was devised. This technique was tested on 150 Sprague-Dawley rats in two separate series of experiments. In the first, end-to-side anastomoses were performed on the iliac artery under the normal tension due to the elastic recoil of severed vessels. Four stay sutures were placed 90 degrees apart, and the intervals were "spot welded" with a low-wattage CO2 microsurgical laser unit. The patency rate (96 percent) was equivalent to that found in a control group utilizing the conventional all-suture method (92 percent), but there was a significantly higher aneurysm rate (44 versus 11 percent). In a second model, an arterial bypass with very low anastomotic tension was performed around an obstruction created in the carotid artery. This model resulted in turbulent flow but low anastomotic tension. Here the laser-anastomosis patency rate was 98 percent, versus 42 percent for the conventional all-suture method. The placement of fewer sutures in association with turbulent flow in this model may account for the improved patency rate. The avoidance of excessive tension at the anastomotic site reduced the incidence of aneurysms to a negligible level.  相似文献   

2.
This study describes the effects of CO2 laser radiation on the histology of the normal rabbit arterial wall, using models that simulate laser angioplasty and anastomosis. Rabbit arteries were exposed to laser treatments similar to those used clinically; 40, 0.5 sec pulses of 40-60 mW, CO2 continuous wavelength laser, or a 1/2-circumferential laser anastomosis with a 60-80 mW continuous pulse. Aneurysms developed in 8 of 22 femoral, 1 of 22 carotid, and no controls at 12 week. There were small breaks in the internal elastic lamina with atrophy, loss of muscularis, "packing" of the elastica, thinning of the muscularis at the damage site, and enlargement of the arterial diameter. Aneurysms developed in one femoral and no carotid anastomosed artery. Laser anastomoses demonstrated more muscle damage and loss, with extensive scarring and a wider area of elastic loss than the controls. The intima was reestablished with focal reduplication of the internal elastic lamina. There were no histologic differences between the arteries which developed aneurysms and those which did not in either series. These results suggest that low power laser damage of the arterial wall consists mainly of destruction of the muscularis propria, with minimal damage to the elastica.  相似文献   

3.
Dissection and microsurgical anastomosis in small and thin-walled vessels is challenging. Temporary assisting suspension suture technique was developed to overcome those difficulties in establishing successful composite tissue allotransplantation in mice. The operations were performed in 12- to 16-week-old Balb/c mice weighing 25 to 30 grams as both donor and recipient animals. Extended vascularized groin cutaneous flaps based on the superficial epigastric vessels were used. A total of 10 groin cutaneous flaps were transplanted. Three temporary assisting suspension sutures of 11-0 nylon were placed at the 12-, 4-, and 8-o'clock positions to donor and recipient artery and vein before the anastomosis. This technique allowed atraumatic dissection of delicate and thin vessels, prevented vessel wall collapse, and facilitated adequate exposure of the lumen during placement of the permanent microvascular sutures. Thus, the microvascular anastomosis was performed in an unusual manner. The temporary assisting suspension sutures were removed just before the permanent suture was tied down. The mean operation time was 1 hour and 45 minutes with an ischemia time of 1 hour. Ninety-percent success in immediate and late-term patency rates was achieved, which was confirmed by transplant survival. This technique was proven to be useful for microvascular anastomosis in thin-walled vessels and is recommended.  相似文献   

4.
In this study, a microvascular anastomosing technique called "eversion with four sutures" is introduced. For microvascular anastomosis, this technique requires fishmouth incisions at both vessel ends and the completion of four sutures. In 120 Wistar-Albino rats, 120 eversion and 120 conventional anastomoses were done in 240 femoral arteries. Each rat received both treatments. Operating time, bleeding time, number of sutures used, patency rates, and pseudoaneurysm formation were analyzed statistically; healing was evaluated with both light and electron microscopy. When compared with the conventional technique using nine sutures, the eversion with four sutures technique was found to be a faster and easier method of anastomosis and as reliable as the conventional technique. Without compromising patency rates, bleeding time, or rates of pseudoaneurysm formation, anastomosis time and amount of suture material exposed to the lumen were significantly reduced when using this technique. In conclusion, the authors think that eversion with four sutures is a reliable alternative to the conventional suturing technique, especially for emergency cases that require multiple microvascular anastomoses.  相似文献   

5.
In the cranial vault, suture morphogenesis occurs when the growing cranial bones approximate and overlap or abut one another. Patency of developing sutures is regulated by the underlying dura mater. Once cranial sutures form, bone growth proceeds from the sutures in response to growth signals from the rapidly expanding neurocranium. Facial sutures do not develop in contact with the dura mater. It was therefore hypothesized that facial suture morphogenesis and bone growth from facial sutures are regulated by tissues with an equivalent role to the dura mater. The present study was designed to test this hypothesis by characterizing the morphology and growth factor expression in developing transpalatal (TP) sutures and their surrounding tissues, and then assessing the role of the overlying nasal capsular (NC) cartilages in maintaining suture patency. TP sutures develop as overlapping sutures, similar to cranial coronal sutures, and expression of Tgf-betas in TP sutures was similar to their distribution in cranial coronal sutures. To establish whether NC cartilages play a role in regulating TP suture morphogenesis, fetal rat TP sutures were cultured with associated attached NC cartilages or with NC cartilages removed. Sutures cultured for upward of 5 days with intact NC cartilages remained patent and maintained their cellular and fibrous components. However, in the absence of NC cartilages, the cellular nature of the sutures was not maintained and they became progressively acellular, with bony bridging across the suture. This finding is similar to that for cranial vault sutures cultured in the absence of dura mater, indicating that NC cartilages play an equivalent role to dura mater in maintaining the patency of developing sutures. These studies indicate that tissue interactions likely regulate morphogenesis of all cranial and facial sutures.  相似文献   

6.
Small-intestine submucosa (SIS) is cell-free, 100-mu-thick collagen derived from the small intestine. It has been used as a vascular graft and has the highly desirable ability to be remodeled to become histologically indistinguishable from native adjacent artery. To date there has been limited reporting of its preimplantation and explant mechanical properties as a vascular graft. In this study, compliance, elastic modulus, and burst pressure were measured on preimplant-tested 5- and 8-mm SIS grafts and two 60-day remodeled grafts. Seven prefabricated grafts were implanted in the carotid (n = 7) in dogs, which were sacrificed after 55-63 days. The animals (n = 4) weighed from 22 to 27 kg. One dog received a unilateral carotid graft, and 3 dogs received bilateral carotid grafts. The fabrication technique employed hand-suturing with either nonresorbable or resorbable sutures. None of the grafts had a patency failure. Angiograms taken at 1 month and just before explantation showed uniform flow and no dilation. At the time of explantation, all carotid grafts were found to be encased in fibrous tissue. The grafts made with nonresorbable sutures showed thicker tissue growth at the suture line compared with those made with the resorbable sutures. Along the suture line, the grafts made with resorbable sutures exhibited a more natural color than those sutured with nonresorbable sutures. When the explanted carotid grafts were slit open, the lumen was white, shiny, and glistening. The grafts sutured with nonresorbable sutures exhibited small areas of fibrin and red blood cells when the suture was within the lumen. The resorbable-sutured grafts did not exhibit this response. The mean compliance (percent diameter increase for a pressure rise from 80 to 120 mm Hg) was on average 4.6% (range, 2.9%-8.6%) for the 5-mm preimplant-tested grafts. For the 8-mm preimplant-tested grafts, the increase in diameter for the same pressure rise was 8.7%, on average (range, 7.2% to 9.5%). For comparison, the small-diameter SIS graft at the time of implantation was about one half as compliant as the adjacent dog carotid artery, about 4 times more compliant than a typical vein graft, and more than 10 times more compliant than synthetic vascular grafts. The compliance measured on two 60-day carotid grafts was 10.5% and 7.2%, respectively. This is midway between the original compliance value and the compliance of a typical canine carotid artery (14%), indicating that mechanical remodeling occurred. The modulus of elasticity (E) increased exponentially with increasing pressure according to E = E0e alpha P, where E0 is the zero-pressure modulus and alpha is the exponent that describes the rate of increase in E with pressure; the unit of measure for variables E, E0, and P is g/cm2. The mean value for E0 was 4106 gm/cm2 (range, 1348-5601). The mean value for alpha was 0.0059 (range, 0.0028-0.0125). At 100 mm Hg, the mean value for E was 8.03 x 10(6) dynes/cm2 (range, 4.95-15.7 x 10(6)). For a 60-day SIS graft implant, the elastic modulus at 100 mm Hg decreased from a high value at implant time to twice that of a typical native canine carotid artery. The mean burst pressure for 5.5-mm grafts was 3517 mm Hg (range, 2069-4654). The burst pressure of the remodeled carotid grafts averaged 5660 mm Hg. The burst pressure for a typical carotid artery is about 5000 mm Hg. The results of this preliminary study complement those of previous SIS-vascular-graft studies and add a new factor, namely that the mechanical properties of the remodeled graft approach those of the vessel it replaces.  相似文献   

7.
A new mechanical device (the Unilink system) was compared to conventional suture anastomoses in irradiated microvessels. Twenty rabbits received a single radiation dose of 20 Gy from a 7-MeV electron source through an anterior neck field. One and 6 months following irradiation, the carotid arteries and facial veins were divided and anastomosed on one side with the Unilink system and on the other side with suture technique. At sacrifice 4 weeks postoperatively, all vessels were evaluated for patency and histologic changes associated with radiation and anastomotic trauma. Histology disclosed severe radiation changes. Also, intimal hyperplasia was consistently found at the anastomotic sites in the arteries, while it was totally absent in the venous anastomoses. Occlusive thrombosis was found in two arteries, one anastomosed with the Unilink system and one sutured. Two other arteries, one from each group, had subtotal occlusions at the anastomotic site. No occlusions occurred in any of the venous anastomoses. The overall patency in this study was 97.5 percent, with no difference between the two techniques.  相似文献   

8.
Recent studies have implicated the transforming growth factor (TGF)-beta family in the regulation of pathological sporadic cranial suture fusion. In addition, these studies have shown that TGF-beta is highly expressed by the dura mater underlying fusing murine cranial sutures. The purpose of the present experiments was to analyze the effects of disrupting TGF-beta signaling during programmed mouse cranial suture fusion. Using recombinant DNA technology, a replication-deficient adenovirus encoding a defective TGF-beta receptor (Ad.DN-TbetaRII) capable of blocking TGF-beta biological activity was constructed. Mouse posterior frontal sutures were harvested before the initiation of suture fusion (postnatal day 25), and the dura mater underlying the suture was infected with vehicle, Ad.DN-TbetaRII, or control virus (Ad.LacZ; n = 10 each). Sutures were cultured for 14 or 30 days in an organ culture system and analyzed macroscopically and histologically.X-gal staining of Ad.LacZ-infected sutures 14 days after culture revealed strong staining of cells localized to the dura mater. Macroscopic analysis revealed complete sutural fusion in vehicle and Ad.LacZ-infected sutures. In contrast, Ad.DN-TBRII-infected sutures demonstrated nearly complete patency. Histological analysis confirmed our macroscopic observations with sutural fusion in 81.3 +/- 10 percent and 74.5 +/- 9 percent of vehicle and Ad.LacZ-infected sutures, respectively, versus 38.1 +/- 12 percent (p < 0.001) in Ad.DN-TbetaRII-infected sutures. In addition, transfection with the Ad.DN-TbetaRII virus resulted in a significant attenuation of anterior-to-posterior suture fusion, with the majority of fused sections localized to anterior sections. These data strongly implicate TGF-beta biological activity in the dura mater underlying the posterior frontal suture in the regulation of programmed sutural fusion. In addition, this study demonstrates the utility of adenovirus-mediated gene transfer in preventing programmed sutural fusion.  相似文献   

9.
Premature closure of cranial sutures, which serve as growth centers for the skull vault, result in craniosynostosis. In the mouse posterior frontal (PF) suture closes by endochondral ossification, whereas sagittal (SAG) remain patent life time, although both are neural crest tissue derived. We therefore, investigated why cranial sutures of same tissue origin adopt a different fate. We demonstrated that closure of the PF suture is tightly regulated by canonical Wnt signaling, whereas patency of the SAG suture is achieved by constantly activated canonical Wnt signaling. Importantly, the fate of PF and SAG sutures can be reversed by manipulating Wnt signaling. Continuous activation of canonical Wnt signaling in the PF suture inhibits endochondral ossification and therefore, suture closure, In contrast, inhibition of canonical Wnt signaling in the SAG suture, upon treatment with Wnt antagonists results in endochondral ossification and suture closure. Thus, inhibition of canonical Wnt signaling in the SAG suture phenocopies craniosynostosis. Moreover, mice haploinsufficient for Twist1, a target gene of canonical Wnt signaling which inhibits chondrogenesis, have sagittal craniosynostosis. We propose that regulation of canonical Wnt signaling is of crucial importance during the physiological patterning of PF and SAG sutures. Importantly, dysregulation of this pathway may lead to craniosynostosis.  相似文献   

10.
Premature suture obliteration results in an inability of cranial and facial bones to grow, with craniofacial dysmorphology requiring surgical correction as a consequence. Understanding signaling pathways associated with suture morphogenesis might enable non-invasive treatment of patients with fused sutures. Tgf-beta 2 induces premature suture fusion associated with increased cell proliferation both in vitro and in vivo. Tgf-beta 2 and Egf signal transduction pathways use some signaling proteins in common to regulate proliferation and differentiation, leading to speculation that these two pathways converge to regulate normal suture development. It was therefore hypothesized that Egf could induce suture fusion, and that Tgf-beta 2-induced suture closure occurred via an Egf-dependent pathway. A well-established fetal calvarial organ culture system was used to expose developing E19.5 fetal rat coronal sutures to Egf, Tgf-beta 2 and SC-120, a blocker of Egf receptor activity. Co-culture experiments examined the effect of Egf on Tgf-beta 2-induced suture closure when Egf was given either prior to or after Tgf-beta 2 treatment. Histomorphometric measurement of suture width was done on sagittal sections through coronal sutures harvested after 5 days in culture. Western blotting using phospho-antibodies against Egf receptors was used to confirm Egf receptor activity. Suture width increased with increasing concentrations of Egf, demonstrating that Egf-induced cell activity alone was not sufficient to cause premature suture obliteration. Egf administered prior to Tgf-beta 2 treatment rescued sutures from Tgf-beta 2-induced suture obliteration, demonstrating that pre-exposure of cells to this powerful mitogen prevented their response to signals induced by Tgf-beta 2. However, Egf added after Tgf-beta 2 treatment had no effect on Tgf-beta 2-induced suture closure. Blocking Egf activity after Tgf-beta 2 treatment rescued sutures from Tgf-beta 2-induced obliteration, indicating that Tgf-beta 2 required Egf activity to induce suture obliteration. Appropriate timing of signal generation by Egf and Tgf-beta 2 is critical for normal suture development and maintenance of suture patency.  相似文献   

11.
The mouse heterotopic heart transplantation has been used widely since it was introduced by Drs. Corry and Russell in 1973. It is particularly valuable for studying rejection and immune response now that newer transgenic and gene knockout mice are available, and a large number of immunologic reagents have been developed. The heart transplant model is less stringent than the skin transplant models, although technically more challenging. We have developed a modified technique and have completed over 1000 successful cases of heterotopic heart transplantation in mice. When making anastomosis of the ascending aorta and abdominal aorta, two stay sutures are placed at the proximal and distal apexes of recipient abdominal aorta with the donor s ascending aorta, then using 11-0 suture for anastomosis on both side of aorta with continuing sutures. The stay sutures make the anastomosis easier and 11-0 is an ideal suture size to avoid bleeding and thrombosis.When making anastomosis of pulmonary artery and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s pulmonary artery. The left wall of the inferior vena cava and donor s pulmonary artery is closed with continuing sutures in the inside of the inferior vena cava after, one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s pulmonary artery are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.  相似文献   

12.

Background

Craniosynostosis, the premature fusion of calvarial sutures, is a common craniofacial abnormality. Causative mutations in more than 10 genes have been identified, involving fibroblast growth factor, transforming growth factor beta, and Eph/ephrin signalling pathways. Mutations affect each human calvarial suture (coronal, sagittal, metopic, and lambdoid) differently, suggesting different gene expression patterns exist in each human suture. To better understand the molecular control of human suture morphogenesis we used microarray analysis to identify genes differentially expressed during suture fusion in children with craniosynostosis. Expression differences were also analysed between each unfused suture type, between sutures from syndromic and non-syndromic craniosynostosis patients, and between unfused sutures from individuals with and without craniosynostosis.

Results

We identified genes with increased expression in unfused sutures compared to fusing/fused sutures that may be pivotal to the maintenance of suture patency or in controlling early osteoblast differentiation (i.e. RBP4, GPC3, C1QTNF3, IL11RA, PTN, POSTN). In addition, we have identified genes with increased expression in fusing/fused suture tissue that we suggest could have a role in premature suture fusion (i.e. WIF1, ANXA3, CYFIP2). Proteins of two of these genes, glypican 3 and retinol binding protein 4, were investigated by immunohistochemistry and localised to the suture mesenchyme and osteogenic fronts of developing human calvaria, respectively, suggesting novel roles for these proteins in the maintenance of suture patency or in controlling early osteoblast differentiation. We show that there is limited difference in whole genome expression between sutures isolated from patients with syndromic and non-syndromic craniosynostosis and confirmed this by quantitative RT-PCR. Furthermore, distinct expression profiles for each unfused suture type were noted, with the metopic suture being most disparate. Finally, although calvarial bones are generally thought to grow without a cartilage precursor, we show histologically and by identification of cartilage-specific gene expression that cartilage may be involved in the morphogenesis of lambdoid and posterior sagittal sutures.

Conclusion

This study has provided further insight into the complex signalling network which controls human calvarial suture morphogenesis and craniosynostosis. Identified genes are candidates for targeted therapeutic development and to screen for craniosynostosis-causing mutations.  相似文献   

13.
The etiopathology of the clinical entity normally referred to as unilateral coronal synostosis is commonly used to connote unilateral fusion of the frontoparietal suture. However, other sutures in the coronal ring may exhibit synostosis concomitant with or independent from frontoparietal synostosis and give rise to similar clinical phenotypes. This study retrospectively analyzes high-resolution computed tomographic data sets to determine patency of sutures within the coronal ring. Computed tomographic scan digital data from 33 infants who subsequently underwent surgical correction of unilateral coronal synostosis were assessed for sutural patency using Analyze imaging software. The frontosphenoidal suture was subdivided into intraorbital frontosphenoidal and extraorbital frontosphenoidal portions, and the patency of the frontoethmoidal suture was also assessed. Patients were sorted into two groups on the basis of the status of their frontosphenoidal sutures: group 1 had patent frontosphenoidal but synostotic frontoparietal sutures (n = 21) and group 2 had both frontosphenoidal and frontoparietal synostoses. Observer reproducibility was tested. The vertical and horizontal dimensions of the bony orbit and the endocranial base deflection angle were measured with the observer blinded with regard to sutural status group. Frontoethmoidal synostosis was not noted in any patients in either group. Two patients had no frontoparietal suture synostosis with isolated intraorbital frontosphenoidal and extraorbital frontosphenoidal suture closures. Suture diagnosis reproducibility was 99 percent. In group 1, the ipsilateral-to-contralateral vertical orbit dimension ratio averaged 1.11, whereas in group 2 it averaged 1.04 (p < 0.05). The ratio of horizontal orbit measurements was not significantly different between groups. In both groups, the endocranial base was deflected ipsilateral to the synostotic frontoparietal suture, with an average angle of 12 degrees in group 1 and 17 degrees in group 2 (p < 0.005). The extent of synostosis along the coronal sutural ring contributes to the dysmorphology of the orbit and the endocranial base deflection in patients whose clinical phenotypic diagnosis is unilateral coronal synostosis.  相似文献   

14.
Sutures are a 4,000 year old technology that remain the ''gold-standard'' for wound closure by virtue of their repair strength (~100 KPa). However, sutures can act as a nidus for infection and in many procedures are unable to effect wound repair or interfere with functional tissue regeneration.1 Surgical glues and adhesives, such as those based on fibrin and cyanoacrylates, have been developed as alternatives to sutures for the repair of such wounds. However, current commercial adhesives also have significant disadvantages, ranging from viral and prion transfer and a lack of repair strength as with the fibrin glues, to tissue toxicity and a lack of biocompatibility for the cyanoacrylate based adhesives. Furthermore, currently available surgical adhesives tend to be gel-based and can have extended curing times which limit their application.2 Similarly, the use of UV lasers to facilitate cross-linking mechanisms in protein-based or albumin ''solders'' can lead to DNA damage while laser tissue welding (LTW) predisposes thermal damage to tissues.3 Despite their disadvantages, adhesives and LTW have captured approximately 30% of the wound closure market reported to be in excess of US $5 billion per annum, a significant testament to the need for sutureless technology.4In the pursuit of sutureless technology we have utilized chitosan as a biomaterial for the development of a flexible, thin film, laser-activated surgical adhesive termed ''SurgiLux''. This novel bioadhesive uses a unique combination of biomaterials and photonics that are FDA approved and successfully used in a variety of biomedical applications and products. SurgiLux overcomes all the disadvantages associated with sutures and current surgical adhesives (see Table 1).In this presentation we report the relatively simple protocol for the fabrication of SurgiLux and demonstrate its laser activation and tissue weld strength. SurgiLux films adhere to collagenous tissue without chemical modification such as cross-linking and through irradiation using a comparatively low-powered (120 mW) infrared laser instead of UV light. Chitosan films have a natural but weak adhesive attraction to collagen (~3 KPa), laser activation of the chitosan based SurgiLux films emphasizes the strength of this adhesion through polymer chain interactions as a consequence of transient thermal expansion.5 Without this ''activation'' process, SurgiLux films are readily removed.6-9 SurgiLux has been tested both in vitro and in vivo on a variety of tissues including nerve, intestine, dura mater and cornea. In all cases it demonstrated good biocompatibility and negligible thermal damage as a consequence of irradiation.6-10  相似文献   

15.
Premature cranial suture fusion, or craniosynostosis, can result in gross aberrations of craniofacial growth. The biology underlying cranial suture fusion remains poorly understood. Previous studies of the Sprague-Dawley rat posterior frontal suture, which fuses at between 12 and 20 days, have suggested that the regional dura mater beneath the cranial suture directs the overlying suture's fusion. To address the dura-suture paracrine signaling that results in osteogenic differentiation and suture fusion, the authors investigated the possible role of insulin-like growth factors (IGF) I and II. The authors studied the temporal and spatial patterns of the expression of IGF-I and IGF-II mRNA and IGF-I peptide and osteocalcin (bone morphogenetic protein-4) protein in fusing posterior frontal rat sutures, and they compared them with patent coronal (control) sutures. Ten Sprague-Dawley rats were studied at the following time points: 16, 18, and 20 days of gestation and 2, 5, 10, 15, 20, 30, 50, and 80 days after birth (n = 110). Posterior frontal and coronal (patent, control) sutures were analyzed for IGF-I and IGF-II mRNA expression by in situ hybridization by using 35S-labeled IGF-I and IGF-II antisense riboprobes. Levels of IGF-I and IGF-II mRNA were quantified by counting the number of autoradiograph signals per cell. IGF-I and osteocalcin immunoreactivity were identified by avidin-biotin peroxidase immunohistochemistry. IGF-I and IGF-II mRNA were expressed in dural cells beneath fusing sutures, and the relative mRNA abundance increased between 2 and 10 days before initiation of fusion. Subsequently, IGF-I and IGF-II mRNA were detected in the suture connective tissue cells at 15 and 20 days during the time of active fusion. In contrast, within large osteoblasts of the osteogenic front, the expression of IGF-I and IGF-II mRNA was minimal. However, IGF-I peptide and osteocalcin protein were intensely immunoreactive within these osteoblasts at 15 days (during the period of suture fusion). These data suggest that the dura-suture interaction may be signaled in a paracrine fashion by dura-derived growth factors, such as IGF-I and IGF-II. These peptides, in turn, stimulate nearby osteoblasts to produce bone-promoting growth factors, such as osteocalcin.  相似文献   

16.
Mouse models are of special interest in research since a wide variety of monoclonal antibodies and commercially defined inbred and knockout strains are available to perform mechanistic in vivo studies. While heart transplantation models using a suture technique were first successfully developed in rats, the translation into an equally widespread used murine equivalent was never achieved due the technical complexity of the microsurgical procedure. In contrast, non-suture cuff techniques, also developed initially in rats, were successfully adapted for use in mice1-3. This technique for revascularization involves two major steps I) everting the recipient vessel over a polyethylene cuff; II) pulling the donor vessel over the formerly everted recipient vessel and holding it in place with a circumferential tie. This ensures a continuity of the endothelial layer, short operating time and very high patency rates4.Using this technique for vascular anastomosis we performed more than 1,000 cervical heart transplants with an overall success rate of 95%. For arterial inflow the common carotid artery and the proximal aortic arch were anastomosed resulting in a retrograde perfusion of the transplanted heart. For venous drainage the pulmonary artery of the graft was anastomosed with the external jugular vein of the recipient5.Herein, we provide additional details of this technique to supplement the video.  相似文献   

17.
18.
In CD-1 mice, the posterior frontal suture (analogous to the human metopic suture) fuses while all other cranial sutures remain patent. In an in vitro organ culture model, the authors previously demonstrated that posterior frontal sutures explanted immediately before the onset of suture fusion (at 25 days old) mimic in vivo physiologic fusion. In the first portion of this study, the authors defined how early in development the posterior frontal suture fuses in their tension-free, serum-free organ culture system by serially analyzing posterior frontal suture fusion from calvariae explanted at different stages of postnatal development. Their results revealed a divergence of suture fate leading to abnormal patency or physiologic fusion between the first and second weeks of life, respectively, despite viability and continued growth of the calvarial explants in vitro. From these data, the authors postulated that the gene expression patterns present in the suture complex at the time of explant may determine whether the posterior frontal suture fuses or remains patent in organ culture. Therefore, to elucidate potentially important differences in gene expression within this "window of opportunity," they performed a cDNA microarray analysis on 5-day-old and 15-day-old posterior frontal and sagittal whole suture complexes corresponding to the age ranges for unsuccessful (1 to 7 days old) and successful (14 to 21 days old) in vitro posterior frontal suture fusion. Overall, their microarray results reveal interesting differential expression patterns of candidate genes in different categories, including angiogenic cytokines and mechanosensitive genes potentially important in cranial suture biology.  相似文献   

19.
20.
用CO2激光对小麦种子分别辐照0、1、3、5min,待其生长至12d时,用10%(W/V)PEG6000胁迫其幼苗,研究激光预处理对PEG6000水分胁迫下小麦幼苗根部脂质过氧化伤害的防护作用。结果表明,CO2激光预处理3min可使水分胁迫的小麦幼苗根部MDA、H2O2含量和O2.-产生速率显著降低(P〈0.05),可显著提高(P〈0.05)小麦幼苗根部SOD、POD、CAT、APX活性和根长、根干重。激光预处理3min可抑制由水分胁迫引起的小麦幼苗根部脂质过氧化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号