首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plants of alfalfa (Medicago sativa) and orchard grass (Dactylus glomerata) were grown in controlled environment chambers at two CO2 concentrations (350 and 700 μmol mol-1) and 4 constant day/night growth temperatures of 15, 20, 25 and 30°C for 50–90 days to determine changes in growth and whole plant CO2 efflux (dark respiration). To facilitate comparisons with other studies, respiration data were expressed on the basis of leaf area, dry weight and protein. Growth at elevated CO2 increased total plant biomass at all temperatures relative to ambient CO2, but the relative enhancement declined (P≤0.05) as temperature increased. Whole plant respiration (Rd) at elevated CO2 declined at 15 and 20°C in D. glomerata on an area, weight or protein basis and in M. sativa on a weight or protein basis when compared to ambient CO2. Separation of Rd into respiration required for growth (Rg) and maintenance (Rm) showed a significant effect of elevated CO2 on both components. Rm was reduced in both species but only at lower temperatures (15°C in M. sativa and 15 and 20°C in D. glomerata). The effect on Rm could not be accounted for by protein content in either species. Rg was also reduced with elevated CO2; however no particular effect of temperature was observed, i. e. Rg was reduced at 20, 25 and 30°C in M. sativa and at 15 and 25°C in D. glomerata. For the two perennial species used in the present study, the data suggest that both Rg and Rm can be reduced by anticipated increases in atmospheric CO2; however, CO2 inhibition of total plant respiration may decline as a function of increasing temperature  相似文献   

2.
Using controlled environmental growth chambers, whole plants of soybean, cv. ‘Clark’, were examined during early development (7–20 days after sowing) at both ambient (≈ 350 μL L–1) and elevated (≈ 700 μL L–1) carbon dioxide and a range of air temperatures (20, 25, 30, and 35 °C) to determine if future climatic change (temperature or CO2 concentration) could alter the ratio of carbon lost by dark respiration to that gained via photosynthesis. Although whole-plant respiration increased with short-term increases in the measurement temperature, respiration acclimated to increasing growth temperature. Respiration, on a dry weight basis, was either unchanged or lower for the elevated CO2 grown plants, relative to ambient CO2 concentration, over the range of growth temperatures. Levels of both starch and sucrose increased with elevated CO2 concentration, but no interaction between CO2 and growth temperature was observed. Relative growth rate increased with elevated CO2 concentration up to a growth temperature of 35 °C. The ratio of respiration to photosynthesis rate over a 24-h period during early development was not altered over the growth temperatures (20–35 °C) and was consistently less at the elevated relative to the ambient CO2 concentration. The current experiment does not support the proposition that global increases in carbon dioxide and temperature will increase the ratio of respiration to photosynthesis; rather, the data suggest that some plant species may continue to act as a sink for carbon even if carbon dioxide and temperature increase simultaneously.  相似文献   

3.
The partial pressure of CO2 at the sites of carboxylation within chloroplasts depends on the conductance to CO2 diffusion from intercellular airspace to the sites of carboxylation, termed mesophyll conductance (gm). We investigated the temperature response of gm in tobacco (Nicotiana tabacum) by combining gas exchange in high light, ambient CO2 in either 2 or 21% O2 with carbon isotope measurements using tuneable diode laser spectroscopy. The gm increased linearly with temperature in 2 or 21% O2. In 21% O2, isotope discrimination associated with gm decreased from 5.0 ± 0.2 to 1.8 ± 0.2‰ as temperature increased from 15 to 40 °C, but the photorespiratory contribution to the isotopic signal is significant. While the fractionation factor for photorespiration (f = 16.2 ± 0.7‰) was independent of temperature between 20 and 35 °C, discrimination associated with photorespiration increased from 1.1 ± 0.01 to 2.7 ± 0.02‰ from 15 to 40 °C. Other mitochondrial respiration contributed around 0.2 ± 0.03‰. The drawdown in CO2 partial pressure from ambient air to intercellular airspaces was nearly independent of leaf temperature. By contrast, the increase in gm with increasing leaf temperature resulted in the drawdown in CO2 partial pressure between intercellular airspaces and the sites of carboxylation decreasing substantially at high temperature.  相似文献   

4.
Abstract: Growth in elevated CO2 led to an increase in biomass production per plant as a result of enhanced carbon uptake and lower rates of respiration, compared to ambient CO2-grown plants. No down-regulation of photosynthesis was found after six months of growth under elevated CO2. Photosynthetic rates at 15°C or 35 °C were also higher in elevated than in ambient CO2-grown plants, when measured at their respective CO2 growth condition. Stomata of elevated CO2-grown plants were less responsive to temperature as compared to ambient CO2 plants. The after effect of a heat-shock treatment (4 h at 45 °C in a chamber with 80% of relative humidity and 800–1000 tmol m-2 s-1 photon flux density) on Amax was less in elevated than in ambient CO2-grown plants. At the photochemical level, the negative effect of the heat-shock treatment was slightly more pronounced in ambient than in elevated CO2-grown plants. A greater tolerance to oxidative stress caused by high temperatures in elevated CO2-grown plants, in comparison to ambient CO2 plants, is suggested by the increase in superoxide dismutase activity, after 1 h at 45 °C, as well as its relatively high activity after 2 and 4 h of the heat shock in the elevated CO2-grown plants in contrast with the decrease to residual levels of superoxide dismutase activity in ambient CO2-grown plants immediately after 1 h at 45 °C. The observed increase in catalase after 1 h at 45 °C in both ambient and elevated CO2-grown plants, can be ascribed to the higher rates of photorespiration and respiration under this high temperature.  相似文献   

5.
The role of acclimation of dark respiration to temperature and CO2 concentration and its relationship to growth are critical in determining plant response to predicted global change. We explored temperature acclimation of respiration in seedlings of tree species of the North American boreal forest. Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and Picea mariana plants were grown from seed in controlled-environments at current and elevated concentrations of CO2 (370 and 580 μmol mol–1) in combination with three temperature treatments of 18/12, 24/18, and 30/24 °C (light/dark period). Specific respiration rates of roots and shoots acclimated to temperature, damping increases in rates across growth-temperature environments compared to short-term temperature responses. Compared at a standard temperature, root and shoot respiration rates were, on average, 40% lower in plants grown at the highest compared to lowest growth temperature. Broad-leaved species had a lower degree of temperature acclimation of respiration than did the conifers. Among species and treatment combinations, rates of respiration were linearly related to size and relative growth rate, and relationships were comparable among growth environments. Specific respiration rates and whole-plant respiratory CO2 efflux as a proportion of daily net CO2 uptake increased at higher growth temperatures, but were minimally affected by CO2 concentration. Whole-plant specific respiration rates were two to three times higher in broad-leaved than coniferous species. However, compared to faster-growing broad-leaved species, slower-growing conifers lost a larger proportion of net daily CO2 uptake as respiratory CO2 efflux, especially in roots. Interspecific variation in acclimation responses of dark respiration to temperature is more important than acclimation of respiration to CO2 enrichment in modifying tree seedling growth responses to projected increases in CO2 concentration and temperature.  相似文献   

6.
Two herbaceous perennials, alfalfa (Medicago sativa L. cv. Arc) and orchard grass (Dactylus glomerata L. cv. Potomac), were grown at ambient (367 μmol mol−1) and elevated (729 μmol mol−1) CO2 concentrations at constant temperatures of 15, 20, 25 and 30°C in order to examine direct and indirect changes in nighttime CO2 efflux rate (respiration) of single leaves. Direct (biochemical) effects of CO2 on nighttime respiration were determined for each growth condition by brief (<30 min) exposure to each CO2 concentration. If no direct inhibition of respiration was observed, then long-term reductions in CO2 efflux between CO2 treatments were presumed to be due to indirect inhibition, probably related to long-term changes in leaf composition. By this criterion, indirect effects of CO2 on leaf respiration were observed at 15 and 20°C for M. sativa on a weight basis, but not on a leaf area or protein basis. Direct effects however, were observed at 15, 20 and 25°C in D. glomerata; therefore the observed reductions in respiration for leaves grown and measured at elevated relative to ambient CO2 concentrations could not be distinguished as indirect inhibition. No inhibition of respiration at elevated CO2 was observed at the highest growth temperature (30°C) in either species. CO2 efflux increased with measurement and growth temperature for M. sativa at both CO2 concentrations; however, CO2 efflux in D. glomerata showed complete acclimation to growth temperature. Stimulation of leaf area and weight by elevated CO2 levels declined with growth temperature in both species. Data from the present study suggest that both direct and indirect inhibition of respiration are possible with future increases in atmospheric CO2, and that the degree of each type of respiratory inhibition is a function of growth temperature.  相似文献   

7.
Abstract. It has been shown that atmospheric O2 can either depress or stimulate the rate of apparent photosynthesis of white mustard depending on the environmental conditions: CO2 concentration, light intensity and temperature. Stimulation by O2 was observed only under high photon fluence rate and at high CO2 concentrations. The critical CO2 concentration below which O2 was inhibiting and above which it was stimulating was dependent on the temperature of the assay: for plants grown at 12°C the critical CO2 concentration was 13.35 mmol at 5° C and 21.92 mmol at 10° C. Stimulation by O2 depended also on the growth temperature: for measurements at 26.31 mmol m?3 CO2, O2 was stimulating at temperatures less than 12°C for plants grown at 12°C and less than 19°C for plants grown at 27°C. The efficiency of the O2-dependent stimulation of net photosynthesis was maximum at 9.21 mol m?3 O2 at 26.31 mmol m?3 CO2. Oxygen-stimulation of net photosynthesis was detected in Nicotiana tabacum L. var Samsun, Lycopersicum esculentum L. and Chenopodium album L. At 5°C and under high photon fluence rate, O2 increased the carboxylation capacity of the photosynthetic apparatus of mustard and decreased its affinity for CO2. The O2 inhibition of the net CO2 uptake observed at low CO2 concentrations was the result of a decrease in the affinity for carbon dioxide. The nature of the mechanism which causes the stimulation of photosynthesis is discussed.  相似文献   

8.
Respiration measurements were made on the entire aboveground parts of young, field-grown hinoki cypress (Chamaecyparis obtusa) trees at monthly intervals over a 5-year period, to examine the effect of temperature on maintenance and growth respiration coefficients. The respiration rate of the trees was grouped on a monthly basis and then partitioned into maintenance and growth components. The maintenance respiration coefficient increased exponentially with air temperature. The maintenance respiration coefficient at a temperature of 0°C and itsQ 10 value were 0.205 mmol CO2 g−1 d.w. month−1 and 1.81, respectively. The growth respiration coefficient, which was virtually independent of temperature, had a mean value of 38.06±1.95 (SE) mmol CO2g−1 d.w. The growth rate increased exponentially with increasing temperature up to a peak at around 18°C, and thereafter declined, thereby resulting in the growth respiration rate being increasingly less sensitive to increasing air temperature. The reported decreases in theQ 10 value of total respiration with increasing air temperature is due to the way in which the growth component of respiration responds to temperature.  相似文献   

9.
Muhlenbergia sobolifera (Muhl.) Trin., a C4 grass, occurs in understory habitats in the northeastern United States. Plants of M. sobolifera were grown at 23 and 30°C at 150 and 700 μmol photons m−2 s−1. The photosynthetic CO2 compensation point, maximum CO2 assimilation, dark respiration and the absorbed quantum use efficiency (QUE) were measured at 23 and 30°C at 2 and 20% O2. Photosynthetic CO2 compensation points ranged from 4 to 14mm3 dm−3 CO2 and showed limited O2 sensitivity. The mean photosynthetic CO2 compensation point of plants grown at 30°C (4·5 mm3 dm−3) was 57% lower and 80% less inhibited by O2 than that of plants grown at 23°C. Photosynthesis was similarly affected by growth temperature, with 70% more O2 inhibition in plants grown at 23°C; suppression over all treatments ranging from 2 to 11%. Unlike typical C4 species, plants of M. sobolifera from both temperature regimes exhibited higher CO2 assimilation rates when grown at low light. Growth temperature and light also affected QUE; plants grown at low light and 23°C had the highest value (0·068 mol CO2/mol quanta). Measurement temperature and growth light regime significantly affected dark respiration; however, O2 did not affect QUE or dark respiration under any growth or measurement conditions. The results indicate that M. sobolifera is adapted to low PPFD, and that complete suppression of photorespiration is dependent upon high growth temperature.  相似文献   

10.
The purpose of this study was to evaluate the temperature response of photosynthesis in two common bean genotypes differing in crop yield when grown under warm conditions. The cultivar Nobre is sensitive to high temperatures, whereas Diplomata shows better crop yield under high temperatures. Plants were grown in a greenhouse prior to transferring to a controlled environment cabinet for the temperature treatments. In a first experiment, 30 days-old plants were subjected to a short exposure (1 day) at temperatures that varied from 9 °C to 39 °C. Diplomata had lower net CO2 assimilation rate (A) at 15 °C and 21 °C, but higher from 27 °C to 39 °C. Photosynthetic parameters calculated from modeling the response of A to the intercellular CO2 concentration suggested that the different temperature responses of the two genotypes are caused by different rates of diffusion of CO2 to the assimilation site, not by differences in biochemical limitations of photosynthesis. While stomatal conductance (gs) did not differ between the genotypes, mesophyll conductance (gm) was slightly greater for Nobre at 15 °C, but much higher in Diplomata from 21 °C to 39 °C. In a second experiment, no difference was observed in biomass accumulation between the two genotypes after growth for 24 days under a 35/20 °C (day/night) regime. Hence, the differences in photosynthesis did not cause variation in plant growth at the vegetative stage. The differential genotypic response of gm to temperature suggests that gm might be an important limitation to photosynthesis in Nobre, the common bean genotype sensitive to elevated temperature. However, more studies are needed employing other methods for gm evaluation to validate these results.  相似文献   

11.
To examine the role of acclimation versus adaptation on the temperature responses of CO2 assimilation, we measured dark respiration (R n) and the CO2 response of net photosynthesis (A) in Populus balsamifera collected from warm and cool habitats and grown at warm and cool temperatures. R n and the rate of photosynthetic electron transport (J) are significantly higher in plants grown at 19 versus 27°C; R n is not affected by the native thermal habitat. By contrast, both the maximum capacity of rubisco (V cmax) and A are relatively insensitive to growth temperature, but both parameters are slightly higher in plants from cool habitats. A is limited by rubisco capacity from 17–37°C regardless of growth temperature, and there is little evidence for an electron-transport limitation. Stomatal conductance (g s) is higher in warm-grown plants, but declines with increasing measurement temperature from 17 to 37°C, regardless of growth temperature. The mesophyll conductance (g m) is relatively temperature insensitive below 25°C, but g m declines at 37°C in cool-grown plants. Plants acclimated to cool temperatures have increased R n/A, but this response does not differ between warm- and cool-adapted populations. Primary carbon metabolism clearly acclimates to growth temperature in P. balsamifera, but the ecotypic differences in A suggest that global warming scenarios might affect populations at the northern and southern edges of the boreal forest in different ways.  相似文献   

12.
Rising atmospheric CO2 concentrations have highlighted the importance of being able to understand and predict C fluxes in plant-soil systems. We investigated the responses of the two fluxes contributing to below-ground efflux of plant root-dependent CO2, root respiration and rhizomicrobial respiration of root exudates. Wheat (Triticum aestivum L., var. Consort) plants were grown in hydroponics at 20°C, pulse-labelled with 14CO2 and subjected to two regimes of temperature and light (12 h photoperiod or darkness at either 15°C or 25°C), to alter plant C supply and demand. Root respiration was increased by temperature with a Q 10 of 1.6. Root exudation was, in itself, unaltered by temperature, however, it was reduced when C supply to the roots was reduced and demand for C for respiration was increased by elevated temperature. The rate of exudation responded much more rapidly to the restriction of C input than did respiration and was approximately four times more sensitive to the decline in C supply than respiration. Although temporal responses of exudation and respiration were treatment dependent, at the end of the experimental period (2 days) the relative proportion of C lost by the two processes was conserved despite differences in the magnitude of total root C loss. Approximately 77% of total C and 67% of 14C lost from roots was accounted for by root respiration. The ratio of exudate specific activity to CO2 specific activity converged to a common value for all treatments of 2, suggesting that exudates and respired CO2were not composed of C of the same age. The results suggest that the contributions of root and rhizomicrobial respiration to root-dependent below-ground respiration are conserved and highlight the dangers in estimating short-term respiration and exudation only from measurements of labelled C. The differences in responses over time and in the age of C lost may ultimately prove useful in improving estimates of root and rhizomicrobial respiration.  相似文献   

13.
Terrestrial higher plants exchange large amounts of CO2 with the atmosphere each year; c. 15% of the atmospheric pool of C is assimilated in terrestrial-plant photosynthesis each year, with an about equal amount returned to the atmosphere as CO2 in plant respiration and the decomposition of soil organic matter and plant litter. Any global change in plant C metabolism can potentially affect atmospheric CO2 content during the course of years to decades. In particular, plant responses to the presently increasing atmospheric CO2 concentration might influence the rate of atmospheric CO2 increase through various biotic feedbacks. Climatic changes caused by increasing atmospheric CO2 concentration may modulate plant and ecosystem responses to CO2 concentration. Climatic changes and increases in pollution associated with increasing atmospheric CO2 concentration may be as significant to plant and ecosystem C balance as CO2 concentration itself. Moreover, human activities such as deforestation and livestock grazing can have impacts on the C balance and structure of individual terrestrial ecosystems that far outweigh effects of increasing CO2 concentration and climatic change. In short-term experiments, which in this case means on the order of 10 years or less, elevated atmospheric CO2 concentration affects terrestrial higher plants in several ways. Elevated CO2 can stimulate photosynthesis, but plants may acclimate and (or) adapt to a change in atmospheric CO2 concentration. Acclimation and adaptation of photosynthesis to increasing CO2 concentration is unlikely to be complete, however. Plant water use efficiency is positively related to CO2 concentration, implying the potential for more plant growth per unit of precipitation or soil moisture with increasing atmospheric CO2 concentration. Plant respiration may be inhibited by elevated CO2 concentration, and although a naive C balance perspective would count this as a benefit to a plant, because respiration is essential for plant growth and health, an inhibition of respiration can be detrimental. The net effect on terrestrial plants of elevated atmospheric CO2 concentration is generally an increase in growth and C accumulation in phytomass. Published estimations, and speculations about, the magnitude of global terrestrial-plant growth responses to increasing atmospheric CO2 concentration range from negligible to fantastic. Well-reasoned analyses point to moderate global plant responses to CO2 concentration. Transfer of C from plants to soils is likely to increase with elevated CO2 concentrations because of greater plant growth, but quantitative effects of those increased inputs to soils on soil C pool sizes are unknown. Whether increases in leaf-level photosynthesis and short-term plant growth stimulations caused by elevated atmospheric CO2 concentration will have, by themselves, significant long-term (tens to hundreds of years) effects on ecosystem C storage and atmospheric CO2 concentration is a matter for speculation, not firm conclusion. Long-term field studies of plant responses to elevated atmospheric CO2 are needed. These will be expensive, difficult, and by definition, results will not be forthcoming for at least decades. Analyses of plants and ecosystems surrounding natural geological CO2 degassing vents may provide the best surrogates for long-term controlled experiments, and therefore the most relevant information pertaining to long-term terrestrial-plant responses to elevated CO2 concentration, but pollutants associated with the vents are a concern in some cases, and quantitative knowledge of the history of atmospheric CO2 concentrations near vents is limited. On the whole, terrestrial higher-plant responses to increasing atmospheric CO2 concentration probably act as negative feedbacks on atmospheric CO2 concentration increases, but they cannot by themselves stop the fossil-fuel-oxidation-driven increase in atmospheric CO2 concentration. And, in the very long-term, atmospheric CO2 concentration is controlled by atmosphere-ocean C equilibrium rather than by terrestrial plant and ecosystem responses to atmospheric CO2 concentration.  相似文献   

14.
This study is devoted to CO2 gas exchange (true photosynthesis at light saturation (P), dark respiration (R), and P/R ratio) in vegetating and cold-hardened winter wheat (Triticum aestivum L.) plants (cultivar Mironovskaya 808) in relation to their freezing tolerance. Under natural cultivation conditions, freezing tolerance of plants depended on adaptive changes in the shape of P and R curves in the temperature range from 20 to ?2°C. These changes, induced by cold hardening and treatment of plants with the photosynthesis inhibitor diuron, were observed within month and week ranges. Under laboratory conditions, the P/R ratio in vegetating plants increased three times within an hour range as the temperature decreased from 22 to 0°C. The P/R ratio also decreased within a minute range as a result of partial inhibition of photosynthesis with diuron and immediately decreased when CO2 concentration in the air was reduced from 419 to 0 μl/l. The P/R ratio decreased primarily at the expense of a decrease in P. The decrease in P/R was more pronounced at low temperatures, indicating variability of low-temperature tolerance of photosynthesis within a minute range. The possibility of plant adaptation to nonsimultaneous temperature changes under natural conditions via adaptive changes in temperature tolerance of the photosynthetic apparatus is discussed.  相似文献   

15.
A model is proposed for the relationship between net photosynthetic rate (N) and light Intensity at a given concentration of CO2 in the air ([CO2]a). The model provides a prediction of the sum of the diffusion resistances (Σr), the capacity (K) of the leaf to fix CO2, the concentration of CO2 at the point of photosynthesis ([CO2]g), and the respiration rate (R). The model fits the available data well and provides a frame work by which future research may be guided. The calculated values of [CO2]g decreased from [CO2]g at the compensation point to a nearly constant value at high tight intensities. [CO2]g high light infensitit-s range from 32 to 144 μ/l (volume) depending on the species. When these values of [CO2]g, are used in the diffusion equation, the resulting levels of the mesophyll resistance (rm) are lower than those calculated by using the assumptions that [CO2]g equals zero. The plants which had (he higher photosynthetic rates at a given light intensity and [CO2]a had grealer values of [CO2]g than those with lower photo-synthetic rates. The calculated rates of respiration of wheat leaves were twice as high as those measured in the dark. This suggests that the light respiration rate may be twice as great as the dark respiration rate at the same temperature. The calculated values of K demonstrate variability within and between species. The maximum N was independent of K. A relationship between K and the maximum quantum efficiency, at constant levels of [CO2]g, was demonstrated in several species. The Σr was inversely related to the maximum rate of photosynthesis for the species investigated. The values of rm calculated for cotton were inversely related to [CO2]a suggesting that the transfer of [CO2] in the cell may involve a concentration dependent chemical reaction in addition to or rather than a physical diffusion process.  相似文献   

16.
Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global carbon (C) cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, air warming, and changing precipitation in a constructed old‐field grassland in eastern Tennessee, USA. Model ecosystems of seven old‐field species were established in open‐top chambers and treated with factorial combinations of ambient or elevated (+300 ppm) CO2 concentration, ambient or elevated (+3 °C) air temperature, and high or low soil moisture content. During the 19‐month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in the other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of time period. Treatment‐induced changes in soil temperature and moisture together explained 49%, 44%, and 56% of the seasonal variations of soil respiration responses to elevated CO2, air warming, and changing precipitation, respectively. Additional indirect effects of seasonal dynamics and responses of plant growth on C substrate supply were indicated. Given the importance of indirect effects of the forcing factors and plant community dynamics on soil temperature, moisture, and C substrate, soil respiration response to climatic warming should not be represented in models as a simple temperature response function, and a more mechanistic representation including vegetation dynamics and substrate supply is needed.  相似文献   

17.
Abstract Associations between photosynthetic responses to CO2 at rate-saturating light and photosynthetic enzyme activities were compared for leaves of maize grown under constant air temperatures of 19, 25 and 31°C. Key photosynthetic enzymes analysed were ribulose bisphosphatc (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, NADP-malic enzyme and pyruvate, Pi dikinasc. Rates of CO2-saturated photosynthesis were similar in leaves developed at 19°C and 25°C but were decreased significantly by growth at 31°C. In contrast, carboxylation efficiency differed significantly between all three temperature regimes. Carboxylation efficiency was greatest in leaves developed at 19°C and decreased with increasing temperature during growth. The changes of carboxylation efficiency were highly correlated with changes in the activity of pyruvate, Pi dikinase (r= 0.95), but not with other photosynthetic enzyme activities. The activities of these latter enzymes, including that of RuBP carboxylase, were relatively insensitive to temperature during growth. The sensitivity of quantum yield to O2 concentration was lower in leaves grown at 19°C than in leaves grown at 31°C. These observations support the novel hypothesis that variation in the capacity for CO2 delivery to the bundle sheath by the C4 cycle, relative to the capacity for net assimilation by the C2 cycle, can be a principal determinant of C4 photosynthetic responses to CO2.  相似文献   

18.
The interactive effects of increased temperature and CO2 enrichment on the growth of 2‐year‐old saplings of Quercus myrsinaefolia, an evergreen broad‐leaved oak, were studied throughout an entire year in the vicinity of their northernmost distribution. Saplings were grown under different conditions in two chambers: (1) a temperature gradient chamber at ambient temperature, 3 and 5 °C warmer conditions with an ambient CO2 concentration, and (2) in a CO2 temperature gradient chamber at 3 °C warmer conditions with 1·5 times the normal CO2 concentration, and 5 °C warmer conditions with doubled CO2 concentration. The 3 and 5 °C warmer conditions enhanced the relative growth rate during almost the entire year, producing 53 and 47% increases in annual biomass production, 27 and 44% enhancement of root growth during shoot dormancy and 3 and 5 week prolongation of the shoot growing period, respectively. However, a daily mean air temperature exceeding 30 °C under the 5 °C warmer condition caused a marked reduction in net assimilation rate (NAR) from July to September. The CO2 enrichment further enhanced the positive effects of warming in spring and the resulting increases in NAR almost completely compensated for the negative effect of warming during summer. From autumn to winter, attenuation of the effects of CO2 was compensated by the increased sink strength produced by the warming. The annual biomass production was more than doubled by the combination of temperature elevation and CO2 enrichment.  相似文献   

19.
Abstract The CO2 compensation point of Ulva lactuca frond sections has been measured in artificial seawater using a sensitive gas-chromatographic method. Under nitrogen the compensation point remained relatively constant at 3–6 cm3 m−3 at temperatures from 10 to 30°C while in air-saturated medium (0.3 kg m−3 O2) the compensation point rose from 5 cm3 m−3 at 10°C to 11 cm3 m−3 at 30°C. These responses of the compensation point to temperature and oxygen concentration indicate that there is little photorespiratory CO2 loss in this marine macroalga, and the low values of these compensation points indicate that inorganic carbon is actively accumulated by the plant.  相似文献   

20.
Rates of net photosynthesis and respiration were determined for Pithophora oedogonia (Mont.) Wittr. acclimatized to 56 combinations of light (7–1200 μE m?2 s?1) and temperature (5–35°C). Conditions for maximum net photosynthesis were estimated to be 26°C and 970 μE m?2 s?1. The rate of net photosyntheses varied considerably with temperature, with the maximum measured value (9.67 mg O2 h?1 g dry wt.?1) occurring at 25°C. Respiration rate increased with temperature and the light received just prior to measurement. The maximum respiration rate (7.05 mg O2 g?1 h?1) occurred at 30°C and 1200 μE m?2 s?1. Exposure of Pithophora to light levels of 600 or 1200 μE m?2 s?1 prior to determination of the respiration rate resulted in significantly elevated levels of oxygen consumption at temperatures ≥ 15°C. The relationship between light, temperature and photosynthesis and respiration were summarized as three-dimensional response surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号