首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat fragmentation has often been implicated in the decline of many species. For habitat specialists and/or sedentary species, loss of habitat can result in population isolation and lead to negative genetic effects. However, factors other than fragmentation can often be important and also need to be considered when assessing the genetic structure of a species. We genotyped individuals from 13 populations of the cooperatively breeding Brown‐headed Nuthatch Sitta pusilla in Florida to test three alternative hypotheses regarding the effects that habitat fragmentation might have on genetic structure. A map of potential habitat developed from recent satellite imagery suggested that Brown‐headed Nuthatch populations in southern Florida occupied smaller and more isolated habitat patches (i.e. were more fragmented) than populations in northern Florida. We also genotyped individuals from a small, isolated Brown‐headed Nuthatch population on Grand Bahama Island. We found that populations associated with more fragmented habitat in southern Florida had lower allelic richness than populations in northern Florida (P = 0.02), although there were no differences in heterozygosity. Although pairwise estimates of FST were low overall, values among southern populations were generally higher than northern populations. Population assignment tests identified K = 3 clusters corresponding to a northern cluster, a southern cluster and a unique population in southeast Florida; using sampling localities as prior information revealed K = 7 clusters, with greater structure only among southern Florida populations. The Bahamas population showed moderate to high differentiation compared with Florida populations. Overall, our results suggest that fragmentation could affect gene flow in Brown‐headed Nuthatch populations and is likely to become more pronounced over time.  相似文献   

2.
Species with narrow environmental tolerances are often distributed within fragmented patches of suitable habitat, and dispersal among these subpopulations can be difficult to directly observe. Genetic data can help quantify gene flow between localities, which is especially important for vulnerable species with a disjunct range. The Shenandoah salamander (Plethodon shenandoah) is a federally endangered species known only from three mountaintops in Virginia, USA. To reconstruct the evolutionary history and population connectivity of this species, we generated both mitochondrial and nuclear data using sequence capture from individuals collected across all three mountaintops. Applying population and landscape genetic methods, we found strong population structure that was independent of geographic distance. Both the nuclear markers and mitochondrial genomes indicated a deep split between the most southern population and the genetically similar central and northern populations. Although there was some mitochondrial haplotype‐splitting between the central and northern populations, there was admixture in nuclear markers. This is indicative of either a recent split or current male‐biased dispersal among mountain isolates. Models of landscape resistance found that dispersal across north‐facing slopes at mid‐elevation levels best explain the observed genetic structure among populations. These unexpected results highlight the importance of incorporating landscape features in understanding and predicting the movement and fragmentation of this range‐restricted salamander species across space.  相似文献   

3.
The European pond turtle (Emys orbicularis) is threatened and in decline in several regions of its natural range, due to habitat loss combined with population fragmentation. In this work, we have focused our efforts on studying the genetic diversity and structure of Iberian populations with a fine-scale sampling (254 turtles in 10 populations) and a representation from North Africa and Balearic island populations. Using both nuclear and mitochondrial markers (seven microsatellites, ∼1048 bp nDNA and ∼1500 bp mtDNA) we have carried out phylogenetic and demographic analyses. Our results show low values of genetic diversity at the mitochondrial level although our microsatellite dataset revealed relatively high levels of genetic variability with a latitudinal genetic trend decreasing from southern to northern populations. A moderate degree of genetic differentiation was estimated for Iberian populations (genetic distances, F ST values and clusters in the Bayesian analysis). The results in this study combining mtDNA and nDNA, provide the most comprehensive population genetic data for E. orbicularis in the Iberian Peninsula. Our results suggest that Iberian populations within the Iberian–Moroccan lineage should be considered as a single subspecies with five management units, and emphasize the importance of habitat management rather than population reinforcement (i.e. captive breeding and reintroduction) in this long-lived species.  相似文献   

4.
The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbers of nuclear loci identified conflicting and poorly supported relationships among geographically structured clades; these inconsistencies preclude confident use of A. carolinensis evolutionary history in association with morphological, physiological, or reproductive biology studies among sampling localities and necessitate increased effort to resolve evolutionary relationships among natural populations. Here, we used anchored hybrid enrichment of hundreds of genetic markers across the genome of A. carolinensis and identified five strongly supported phylogeographic groups. Using multiple analyses, we produced a fully resolved species tree, investigated relative support for each lineage across all gene trees, and identified mito‐nuclear discordance when comparing our results to previous studies. We found fixed differences in only one clade—southern Florida restricted to the Everglades region—while most polymorphisms were shared between lineages. The southern Florida group likely diverged from other populations during the Pliocene, with all other diversification during the Pleistocene. Multiple lines of support, including phylogenetic relationships, a latitudinal gradient in genetic diversity, and relatively more stable long‐term population sizes in southern phylogeographic groups, indicate that diversification in A. carolinensis occurred northward from southern Florida.  相似文献   

5.
Biological invasions offer excellent systems to study the evolutionary processes involved in introductions of species to new ranges. Molecular markers can reveal invasion histories and the effects of introductions on amounts and structuring of genetic variation. We used five polymorphic microsatellite loci to elucidate genetic diversity and population structure between native range and introduced range populations of a prominent North American rangeland weed, Centaurea diffusa (Asteraceae). We found that the total number of alleles and the number of private alleles was slightly higher in the native Eurasian range, and that allelic richness did not differ between the ranges, indicating overall levels of diversity were similar in Eurasia and North America. It therefore seems unlikely that this invasion has been affected by genetic bottlenecks or founder effects. Indeed, results of assignment tests suggest that multiple introductions have contributed to North America’s C. diffusa invasion. Additionally, assignment tests show that both Eurasian and North American sites had a strong pattern of mixed genetic ancestry. This mixed assignment corresponded to a lack of geographic population structure among Eurasian samples. The lack of population structure in the native range conflicts with general expectations and findings to date for invasion genetics, and cautions that even species’ native ranges may show signs of recent ecological upheaval. Despite the mixed assignments, North American samples showed strong population structure, suggesting that the invasion has been characterized by long-range dispersal of genetically distinct propagules across the introduced range.  相似文献   

6.
A comprehensive study of the phylogeography and population genetics of the largest wild artiodactyl in the arid and cold‐temperate South American environments, the guanaco (Lama guanicoe) was conducted. Patterns of molecular genetic structure were described using 514 bp of mtDNA sequence and 14 biparentally inherited microsatellite markers from 314 samples. These individuals originated from 17 localities throughout the current distribution across Peru, Bolivia, Argentina and Chile. This confirmed well‐defined genetic differentiation and subspecies designation of populations geographically separated to the northwest (L. g. cacsilensis) and southeast (L. g. guanicoe) of the central Andes plateau. However, these populations are not completely isolated, as shown by admixture prevalent throughout a limited contact zone, and a strong signal of expansion from north to south in the beginning of the Holocene. Microsatellite analyses differentiated three northwestern and 4–5 southeastern populations, suggesting patterns of genetic contact among these populations. Possible genetic refuges were identified, as were source‐sink patterns of gene flow at historical and recent time scales. Conservation and management of guanaco should be implemented with an understanding of these local population dynamics while also considering the preservation of broader adaptive variation and evolutionary processes.  相似文献   

7.
Interspecific hybridization is an important evolutionary process, which has significant influence on the diversity within and between participating taxa. Although interspecific hybridization in terrestrial and freshwater organisms has been subjected to many detailed studies, studies in marine realm have been limited in terms of both numbers and detail. In this study, the potential for interspecific hybridization between two rockfishes, Sebastes vulpes and S. zonatus, occurring in the western North Pacific, was assessed on the basis of 177 specimens collected from three sampling localities within the main geographic distribution of both species, and analysed using a combination of amplified fragment length polymorphisms (AFLP), mitochondrial DNA (mtDNA) markers and morphometric characters. Bayesian‐based individual genetic assignment based on 364 AFLP loci detected a total of 63 (35.6%) hybrid specimens in the data set, the presence of interspecific hybrids also being rigorously supported by mtDNA analysis using partial sequences from the control region and morphological analysis based on 31 morphometric characters. Hybrids from all three localities were found, showing a common pattern of biased introgression across the localities whereby hybrids were more closely related to S. zonatus than to S. vulpes. Apart from this common pattern, rates of hybridization varied considerably among the localities, being greater in the northern localities. Variations in the local rates of hybridization were associated with variations in habitat segregation and thermal regime, implying that vertical water temperature regimes determined the extent of habitat segregation of the two species and, accordingly, the opportunity for hybridization.  相似文献   

8.
The endemic and critically endangered cyprinid Chondrostoma lusitanicum has a very restricted distribution range. In order to estimate genetic diversity, characterize population structure and infer the demographic history, we examined six microsatellite loci and cytochrome b (mtDNA) sequences from samples taken throughout C. lusitanicum’s geographical range. Estimates of genetic diversity were low in all samples (average He < 0.35). The microsatellite data pointed to a major difference between northern (Samarra and Tejo drainages) and southern (Sado and Sines drainages) samples. This separation was not so clear with mtDNA, since one sample from the Tejo drainage grouped with the southern samples. This could be related with ancestral polymorphism or with admixture events between northern and southern sites during the late Pleistocene. Nevertheless, both markers indicate high levels of population differentiation in the north (for microsatellites F ST >  0.23; and for mtDNA ΦST > 0.74) and lower levels in the south (F ST < 0.05; ΦST < 0.40). With microsatellites we detected strong signals of a recent population decrease in effective size, by more than one order of magnitude, starting in the last centuries. This is consistent with field observations reporting a severe anthropogenic-driven population decline in the last decades. On the contrary mtDNA suggested a much older expansion. Overall, these results suggest that the distribution of genetic diversity in C. lusitanicum is the result of both ancient events related with drainage system formation, and recent human activities. The potential effect of population substructure generating genetic patterns similar to a population decrease is discussed, as well as the implications of these results for the conservation of C. lusitanicum. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
In contrast to the widespread extirpation of native fire ants (Solenopsis geminata) across southern US following the invasion by imported red fire ants (S. invicta), some residential areas of Austin form unexpected refuges for native fire ants. Ironically, these urban environments provide refuges for the native fire ants while adjacent natural habitats have been overrun by invasive fire ants. Resistance to invasive fire ants in these urban areas occurs mainly in older residential properties constructed prior to the S. invicta invasion, while more recent construction has allowed establishment by S. invicta. The invasive ability of S. invicta is often attributed to escape from parasitoids and efficient dispersal of polygyne multiple queen colonies. Here we also show the importance of landscape parameters in the invasion process, where low levels of disturbance and continuous plant cover in older residential areas form possible barriers to colonization. Dense leaf cover (high NDVI) was also found to be associated with native ant refuges. Long term residential land ownership may have resulted in lower recent disturbance levels and increased plant cover that support refuges of native fire ants.  相似文献   

10.
11.
Madagascar's ring‐tailed lemurs (Lemur catta) are experiencing rapid population declines due to ongoing habitat loss and fragmentation, as well as increasing exploitation for bushmeat and the illegal pet trade. Despite being the focus of extensive and ongoing behavioral studies, there is comparatively little known about the genetic population structuring of the species. Here, we present the most comprehensive population genetic analysis of ring‐tailed lemurs to date from across their likely remaining geographic range. We assessed levels of genetic diversity and population genetic structure using multilocus genotypes for 106 adult individuals from nine geographically representative localities. Population structure and FST analyses revealed moderate genetic differentiation with localities being geographically partitioned into northern, southern, western and also potentially central clusters. Overall genetic diversity, in terms of allelic richness and observed heterozygosity, was high in the species (AR = 4.74, HO = 0.811). In fact, it is the highest among all published lemur estimates to date. While these results are encouraging, ring‐tailed lemurs are currently affected by ongoing habitat fragmentation and occur at lower densities in poorer quality habitats. The effects of continued isolation and fragmentation, coupled with climate‐driven environmental instability, will therefore likely impede the long‐term viability of the species.  相似文献   

12.
Biological invasions are recognized as a major threat to both natural and managed ecosystems. Phylogeographic and population genetic analyses can provide information about the geographical origins and patterns of introduction and explain the causes and mechanisms by which introduced species have become successful invaders. Reticulitermes flavipes is a North American subterranean termite that has been introduced into several areas, including France where introduced populations have become invasive. To identify likely source populations in the USA and to compare the genetic diversity of both native and introduced populations, an extensive molecular genetic study was undertaken using the COII region of mtDNA and 15 microsatellite loci. Our results showed that native northern US populations appeared well differentiated from those of the southern part of the US range. Phylogenetic analysis of both mitochondrial and nuclear markers showed that French populations probably originated from southeastern US populations, and more specifically from Louisiana. All of the mtDNA haplotypes shared between the United States and France were found in Louisiana. Compared to native populations in Louisiana, French populations show lower genetic diversity at both mtDNA and microsatellite markers. These findings are discussed along with the invasion routes of R. flavipes as well as the possible mechanisms by which French populations have evolved after their introduction.  相似文献   

13.
The genetic relationships among northern South China Sea populations of the six bar wrasse (Thallasoma hardwicki) were investigated. Fish collected from the Solomon Islands were used for geographic comparison. In 1998 and 1999, a total of 100 fish were sampled from 6 localities of the northern South China Sea and 3 localities of the Solomon Islands. Genetic variations in DNA sequences were examined from the first hypervariable region (HVR-1) of the mitochondrial control region, as amplified by polymerase chain reaction. High levels of haplotypic diversity (h = 0.944 ± 0.0016, = 0.0224 ± 0.01171) in the HVR-1 region of the mitochondrial control region of T. hardwicki were detected. This yielded 94 haplotypes that exhibited a minimum spanning tree with a starburst structure, suggestive of a very recent origin for most haplotypes. Neutrality tests indicated that the pattern of genetic variability in T. hardwicki is consistent either with genetic hitchhiking by an advantageous mutation or with population expansion. Partitioning populations into coherent geographic groups divided the northern South China Sea samples (CT = 0.0313, P < 0.001) into 3 major groups: a north-central group composed of northwestern Taiwan and northern Vietnam; a southwestern group containing southern Vietnam; and a southern group including the central Philippines. These results are in concordance with mesoscale boundaries proposed by allozyme markers, thus highlighting the importance of identifying transboundary units for the conservation and management of fisheries in the South China Sea.  相似文献   

14.
Genetic comparisons between native and invasive populations of a species can provide insights into its invasion history information, which is useful for guiding management and control strategies. The coral berry Ardisia crenata was introduced to Florida last century as a cultivated ornament plant, and has since spread widely throughout the southern regions of the USA. Previously, the genetic variation among 20 natural populations of A. crenata across its distribution center in southern China was quantified using seven microsatellite markers. Here we expand on that work by additionally sampling individuals from four other native populations in Taiwan and Japan, and from five invasive populations in the USA. We also examined the results from one chloroplast intergenic spacer region (trnF-trnL) in all 29 populations. Our aim is to identify the invasion source and subsequent history of the species?? spread throughout the southern USA. We observed lower genetic diversity in the invasive populations based on both microsatellite and chloroplast markers. Our data show that the invasive populations can be clustered with native populations in southeastern China, inferring this region as the geographic origin of A. crenata cultivars invading the USA. We further classified invasive individuals into invasive I and invasive II clusters. Nantou in Taiwan and Xihu in mainland China are the most closely related populations to those, which identify the former as potential sources for host-specific control agents. Our results, combined with the known introduction records, suggest that A. crenata was first multiply introduced into Florida and then secondarily colonized Louisiana and Texas from Florida.  相似文献   

15.
Abstract: Fishers (Martes pennanti) were extirpated from much of southern Ontario, Canada, prior to the 1950s. We hypothesised that the recent recolonization of this area originated from an expansion of the population in Algonquin Provincial Park, which historically served as a refuge for fishers. To test this hypothesis, we created a sampling lattice to encompass Algonquin and the surrounding area, and we collected contemporaneous DNA samples. We sampled fishers from each of 35 sites and genotyped them at 16 microsatellite loci. Using a Bayesian assignment approach, with no a priori geographic information, we inferred 5 discrete genetic populations and used genetic population assignment as a means to cluster sites together. We concluded that the Algonquin Park fisher population has not been a substantial source for recolonization and expansion, which has instead occurred from a number of remnant populations within Ontario, Quebec, and most recently from the Adirondacks in New York, USA. The genetic structure among sampling sites across the entire area revealed a pattern of isolation-by-distance (IBD). However, an examination of the distribution of genetic structure (FST/1- FST) at different distances showed higher rates of gene flow than predicted under a strict IBD model at small distances (40 km) within clusters and at larger distances up to 100 km among clusters. This pattern of genetic structure suggests increased migration and gene flow among expanding reproductive fronts.  相似文献   

16.
The RNA-dependent RNA polymerase (RdRp) region of Solenopsis invicta virus 1 (SINV-1) was sequenced from 47 infected colonies of S. invicta, S. richteri, S. geminata, and S. invicta/richteri hybrids collected from across the USA, northern Argentina, and northern Taiwan in an attempt to infer demographic information about the recent S. invicta introduction into Taiwan by phylogenetic analysis. Nucleotide sequences were calculated to exhibit an overall identity of >90% between geographically-separated samples. A total of 171 nucleotide variable sites (representing 22.4% of the region amplified) were mapped across the SINV-1 RdRp alignment and no insertions or deletions were detected. Phylogenetic analysis at the nucleotide level revealed clustering of Argentinean sequences, distinct from the USA sequences. Moreover, the SINV-1 RdRp sequences derived from recently introduced populations of S. invicta from northern Taiwan resided within the multiple USA groupings implicating the USA as the source for the recent introduction of S. invicta into Taiwan. Examination of the amino acid alignment for the RdRp revealed sequence identity >98% with only nine amino acid changes observed. Seven of these changes occurred in less than 4.3% of samples, while 2 (at positions 1266 and 1285) were featured prominently. Changes at positions 1266 and 1285 accounted for 36.2% and 34.0% of the samples, respectively. Two distinct groups were observed based on the amino acid residue at position 1266, Threonine or Serine. In cases where this amino acid was a Threonine, 90% of these sequences possessed a corresponding Valine at position 1285; only 10% of the Threonine1266-containing sequences possessed an Isoleucine at the 1285 position. Among the Serine1266 group, 76% possessed an Isoleucine at position 1285, while only 24% possessed a Valine. Thus, it appears that the Threonine1266/Valine1285 and Serine1266/Isoleucine1285 combinations are predominant phenotypes.  相似文献   

17.
The codling moth (Cydia pomonella (L.)) is an invasive pest of pome fruits introduced to the Americas in the 19–20th centuries. This pest is widespread on both sides of the Andes range separating Argentina and Chile. We performed an analysis of the population genetic variability and structure of Cpomonella in Argentina and Chile using 13 microsatellite markers and sampled C. pomonella from apple as the main host plant along its distribution area (approx. 1,800 km). A total of 22 locations (11 from Chile and 11 from Argentina) were sampled. Significant genetic differentiation was observed among samples from Argentina and Chile (FSC = 0.045) and between all localities (FST = 0.085). Significant isolation by distance (IBD) was found for each country and when samples from both sides of the Andes range were pooled, although a lower correlation coefficient was observed. The Mantel test showed that the geographic distance and highest altitude of the mountains between locations were significantly associated with the pairwise FST when samples from both sides of the Andes range were pooled. According to a Bayesian assignment test (STRUCTURE), samples from Argentina and Chile conformed to two distinct genetic clusters. Our results also suggest that the recent invasion of Cpomonella in the southernmost localities (Aysén Region in Chile and Santa Cruz Province in Argentina) originated in populations from the respective sides of the Andes range. Our results indicate a genetic exchange of Cpomonella within each country and significant genetic differentiation between countries, which could be explained by dispersal mediated by human activities related to fruit production within each country with little exchange between them. A possible explanation is that the Andes range could be a significant barrier for dispersal by flight, and quarantine barriers could prevent the movement of plant material or infested fruit between countries.  相似文献   

18.
Specimens of seven fire ant species collected from their native ranges in Argentina were studied by protein electrophoresis and morphological analysis. Concordance between the genetic and morphological character sets is strong (96% agreement on identifications), suggesting that recognition of reproductively isolated populations and partitioning of intra- and interspecific variation can in most cases be achieved using appropriate characters of either type in this taxonomically difficult group. Genetic differentiation between native (Argentina) and introduced (USA) conspecific populations of two species, Solenopsis invicta and S. richteri, is rather typical of the differentiation existing between conspecific populations found within either country. Furthermore, there appears to have been little reduction of variability (heterozygosity) at enzyme loci following colonization by either species of the United States, although some rare alleles have been lost in the introduced populations. Hybridization is rare between S. invicta and S. richteri where their native ranges overlap in central Argentina, in contrast to the extensive hybridization of these species in the United States, suggesting that prezygotic barriers to gene flow have been compromised in introduced populations. Phylogenetic analysis of the seven species indicates that S. invicta and S. richteri are relatively distantly related within the S. saevissima complex. Given that hybrids between these species in the United States suffer little apparent loss of fitness, genomic incompatibilities generally may be insufficient to create effective postzygotic barriers to interspecific gene flow in this group of ants.  相似文献   

19.
Genetic variation in wild Asian populations and U.S. hatchery stocks of Crassostrea ariakensis was examined using polymerase chain reactions with restriction fragment length polymorphism (PCR-RFLP) analysis of both the mitochondrial COI gene and the nuclear internal transcribed spacer (ITS) 1 region and using 3 microsatellite markers. Hierarchical analysis of molecular variance and pairwise comparisons revealed significant differentiation (P < 0.05) between samples from the northern region, represented by collections from China and Japan, and 2 of 3 samples from southern China. PCR-RFLP patterns were identified that were diagnostic for the northern (N-type) and southern (S-type) groups. Microsatellite marker profiles were used to assign each oyster to one of the two northern or two southern populations. Results for more than 97% of the oysters were consistent with the PCR-RFLP patterns observed for each individual in that oysters with N-type patterns were assigned to one of the northern populations and those with S-type patterns to one of the southern populations. At one site of the Beihai (B) region in southern China a mix of individuals with either the N-type or S-type PCR-RFLP genotypes was found. No heterozygotes at the nuclear ITS-1 locus were found in the sample, possibly indicating reproductive isolation in sympatry. Microsatellite assignment test results of the B individuals were also consistent with identifications as either the N-type or S-type based on PCR-RFLP patterns. The parental population for one hatchery stock was this B sample, which initially was composed of almost equal numbers of northern and southern genetic types. After hatchery spawns, however, more than 97% of the progeny fell into the northern genetic group by PCR-RFLP and microsatellite assignment test analyses, indicating that the individuals with the southern genotype contributed little to the spawn, owing to gametic incompatibility, differential larval survival, or a difference in timing of sexual maturity. Overall, results suggested that oysters collected as C. ariakensis in this study, and likely in other studies as well, include two different sympatric species with some degree of reproductive isolation.  相似文献   

20.
The ecological and genetic factors determining the extent of introgression between species in secondary contact zones remain poorly understood. Here, we investigate the relative importance of isolating barriers and the demographic expansion of invasive Mytilus galloprovincialis on the magnitude and the direction of introgression with the native Mytilus trossulus in a hybrid zone in central California. We use double‐digest restriction‐site‐associated DNA sequencing (ddRADseq) to genotype 1337 randomly selected single nucleotide polymorphisms and accurately distinguish early and advanced generation hybrids for the first time in the central California Mytilus spp. hybrid zone. Weak levels of introgression were observed in both directions but were slightly more prevalent from the native M. trossulus into the invasive M. galloprovincialis. Few early and advanced backcrossed individuals were observed across the hybrid zone confirming the presence of strong barriers to interbreeding. Heterogeneous patterns of admixture across the zone of contact were consistent with the colonization history of M. galloprovincialis with more extensive introgression in northern localities furthest away from the putative site of introduction in southern California. These observations reinforce the importance of dynamic spatial and demographic expansions in determining patterns of introgression between close congeners, even in those with high dispersal potential and well‐developed reproductive barriers. Our results suggest that the threat posed by invasive M. galloprovincialis is more ecological than genetic as it has displaced, and continues to displace the native M. trossulus from much of central and southern California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号