首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective diffusion coefficient (De) and equilibrium partition factor (Kp) for lactose and lactic acid in k-carrageenan (2.75% w/w)/locust bean gum (0.25% w/w) (LBG) gel beads (1.5-2.0 mm diameter), with or without entrapped Lactobacillus casei subsp. casei (L. casei), were determined at 40 degrees C. Results were obtained from transient concentration changes in well-stirred solutions of finite volume in which the beads were suspended. Mathematical models of unsteady-state diffusion into and/or from a sphere and appropriate boundary conditions were used to calculate effective diffusion coefficients of lactose and lactic acid from the best fit of the experimental solute concentration changes. The effective diffusivities of lactose and lactic acid were 5.73 x 10(-10) and 9.96 x 10(-10) m2 s-1, respectively. Furthermore, lactic acid was found to modify gel structure since lactose diffusion characteristics (De and Kp) differed significantly from an earlier study and in the literature. In gel beads heavily colonized with L. casei, the effective diffusion coefficients of lactose and lactic acid were respectively 17% and 24% lower than for cell-free beads. Partition coefficients also confirmed the obstruction effect due to the cells, and decreased from 0.89 to 0.79, and from 0.98 to 0.87, for lactose and lactic acid, respectively. External mass transfer was estimated by an unsteady-state model in infinite volume using the Biot number. The effect of external mass transfer resistance on De results and the data reported in the literature are discussed.  相似文献   

2.
Effective diffusion coefficients (D(e)) of antibiotic A40926 and its deacylated derivative were determined in Ca-alginate (2% wt/wt) and kappa-carrageenan (2.6% wt/wt) gel beads with or without immobilized Actinoplanes teichomyceticus cells and/or soybean meal (SBM). The method used was based on transient concentration changes in a well-stirred antibiotic solution in which gel beads, initially free of solute, were suspended. Unsteady-state diffusion in a sphere was applied and D(e) determined from the best fit of experimental data. A40926 showed markedly different diffusion characteristics than its deacylated derivative. Diffusivity of deacyl-A40926 in alginate or carrageenan gel beads was six to seven times that of A40926. Large differences in partition coefficients (Kp) were also found. In case of beads without additions, A40926, in contrast to deacyl-A40926, strongly partitioned to the liquid phase. Introduction of SBM and/or mycelium in the gel beads decreased the effective diffusivity of deacyl-A40926, but increased its partitioning to the solid phase. Our findings indicate that a relatively moderate structural change of a lipoglycopeptide molecule could lead to a major change in its diffusion/partition characteristics.  相似文献   

3.
Cells of Streptococcus salivarius subsp. thermophilus and Lactococcus lactis subsp. lactis entrapped in k-carrageenan-locust bean gum gel performed similarly to free cells in the conversion of lactose to lactic acid. Bead diameter influenced the fermentation rate. Cells entrapped in smaller beads (0.5 to 1.0 mm) showed higher release rates, higher lactose, glucose, and formic acid utilization, higher galactose accumulation, and higher lactic acid production than did cells entrapped in larger beads (1.0 to 2.0 mm). Values for smaller beads were comparable with those for free cells. Immobilization affected the fermentation rate of lactic acid bacteria, especially Lactobacillus delbrueckii subsp. bulgaricus. Entrapped cells of L. delbrueckii subsp. bulgaricus demonstrated a lower lactic acid production than did free cells in batch fermentation. The kinetics of the production of formic and pyruvic acids by L. lactis subsp. lactis and S. salivarius subsp. thermophilus are presented.  相似文献   

4.
The effective diffusion coefficient, D(e), and the distribution constant, K(i), for selected mono- and disaccharides and organic acids were determined in homogeneous calcium-alginate gel with and without entrapped bacteria. Results were obtained from transient concentration changes in well-stirred solutions of limited volume, in which the gel beads were suspended. The effective diffusioncoefficients and the distribution constants were estimated by fitting mathematical model predictions to the experimental data using a nonlinear model fitting program (MODFIT). Both single solute diffusion and multiple solute diffusion were performed. A small positive effect was obtained onthe values of D(e) for the system of multiple solute diffusion; however, the values of K(i) were not significantly influenced. For the nine solutes tested, D(e) for 2% Ca-alginate gel beads was found to be approximately 85% of the diffusivity measured in water. The effects on D(e) and K(i), for lactose and lactic acid were determined for variations of alginate concentration, pH, temperature, and biomass content in the beads. D(e) decreased linearly for both lactose and lactic acid with increasing cell concentration in the Ca-alginate gel. K(i), was constant for both lactose and lactic acid with increasing cell concentration. D(e) was significantly lower at pH 4.5 than at pH 5.5 and 6.5 for both lactose and lactic acid. Furthermore, D(e) seemed to decrease with increased alginate concentration in the range of 1% to 4%. The diffusion rate increased with increasing temperature, and the activation energy for the diffusion process for both lactose and lactic acid was constant in the temperature range tested. (c) 1995 John Wiley & Sons Inc.  相似文献   

5.
Four lactobacilli strains (Lactobacillus bulgaricus, Lactobacillus acidophilus, Lactobacilus casei and Lactobacillus reuteri) were grown in MRS broth and three lactococci strains (Streptococcus thermophilus, Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. lactis biovar. diacetilactis) were grown in M17 broth. L. reuteri and S. thermophilus were chosen on the basis of the best mean beta-galactosidase activity of 10.44 and 10.01 U/ml respectively, for further studies on permeate-based medium. The maximum production of beta-galactosidase by L. reuteri was achieved at lactose concentration of 6%, initial pH 5.0-7.5, ammonium phosphate as nitrogen source at a concentration of 0.66 g N/L and incubation temperature at 30 degrees C/24 hrs to give 6.31 U/ml. While in case of S. thermophilus, maximum beta-galactosidase production was achieved at 10% lactose concentration of permeate medium, supplemented with phosphate buffer ratio of 0.5:0.5 (KH2PO4:K2HPO4, g/L), at initial pH 6.0-6.5, ammonium phosphate (0.66g N/L) as nitrogen source and incubation temperature 35 degrees C for 24 hrs to give 7.85 U/ml.  相似文献   

6.
Under intensive aeration (1.3 l/l min) the associated growth of Rhodotorula rubra GED2 and Lactobacillus casei subsp. casei in cheese whey ultrafiltrate (55 g lactose/l) proceeded effectively for both cultures with production of maximum carotenoids (12.4 mg/l culture fluid). For maximum amount of carotenoids synthesized in the cell, the yeast required more intensive aeration than the aeration needed for synthesis of maximum concentration of dry cells. Maximum concentration of carotenoids in the cell (0.49 mg/g dry cells) was registered with air flow rate at 1.3 l/l min, and of dry cells (27.0 g/l) at 1.0 l/l min. An important characteristic of carotenogenesis by Rhodotorula rubra GED2 + Lactobacillus casei subsp. casei was established--the intensive aeration (above 1.0 l/l min) stimulated beta-carotene synthesis (60% of total carotenoids).  相似文献   

7.
One hundred and twenty (120) strains of lactic acid bacteria (LAB) were enumerated and isolated from raw dromedary milk in Morocco using various cultured media. Strains isolated were characterized by phenotypic, physiological and biochemical properties. Results showed that high counts of LAB were found. Presumptive lactobacilli counts ranged from 2.5x10(2) to 6x10(7)cfu/ml, presumptive lactococci levels varied from 5x10(2) to 6x10(7)cfu/ml, presumptive streptococci counts varied from 4.2x10(2) to 8x10(7)cfu/ml, presumptive leuconostoc levels ranged from 5.4x10(2) to 5.4x10(7)cfu/ml. Results showed also that Lactobacillus and Lactococcus were the predominant genera with 37.5% and 25.8%, respectively. The dominated species found were Lactococcus lactis subsp. lactis (17.5%), Lactobacillus helveticus (10%), Streptococcus salivarius subsp. thermophilus (9.20%), Lactobacillus casei subsp. casei (5.80%) and Lactobacillus plantarum (5%). This is the first report on the characterization of LAB strains isolated from the one humped camel milk produced in Morocco.  相似文献   

8.
Summary A cell entrapment process using -carrageenan — locust bean gum gel is presented. Streptococcus thermophilus, Lactobacillus bulgaricus and S. lactis were immobilized in small gel beads (0.5–1.0 mm and 1.0–2.0 mm diameter) and fermentations in bench bioreactors were conducted. Viability of entrapped cells, lactose utilization, lactic acid production and cell release rates were measured during fermentation. The procedure was effective for S. thermophilus, L. bulgaricus and S. lactis, and the viability of these bacteria remained very high throughout entrapment steps and subsequent storage. Bead diameter influenced the fermentation rate: smaller beads (0.5–1.0 mm) permitted an increase in release rates, lactose utilization and acid production by entrapped cells, approximating values attained with free cells.  相似文献   

9.
A novel technique has been developed for measuring effective solute diffusivities in entrapment matrices used for cell immobilization. In this technique radiotracers were used to measure effective diffusivities and equilibrium partition coefficients of the solute between the liquid and solid matrix. Ca-alginate was used in this study, because it is one of the most commonly employed matrices for the immobilization of microbial, plant and mammalian cells. The experimental apparatus consisted of a single spherical Ca-alginate bead which was attached to a rotating rod and immersed in water containing C(14)-glucose. The rotational speed of the spherical bead was controlled and resulted in excellent mixing, and negligible external film mass transfer resistance, which allowed the measurement of true effective solute diffusivity within the solid matrix. The rates of C(14)-glucose diffusion within the Ca-alginate sphere were measured using a scintillation spectrometer. A mathematical model of unsteady-state diffusion in a sphere was used with appropriate boundary conditions, and the effective diffusivity of glucose was found from the best fit of the experimental data using a computer regression analysis method. Using 2% (w/v) Ca-alginate beads in this new radiotracer technique the effective diffusivity and partition coefficient of glucose were found to be 6.62 x 10(-10) m(2)/s and 0.98, respectively. The accuracy, advantages, and simplicity of this new method for diffusivity measurements are also compared to other existing methods.  相似文献   

10.
To date, there is significant controversy as to the survival of yogurt bacteria (namely, Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) after passage through the human gastrointestinal tract. Survival of both bacterial species in human feces was investigated by culture on selective media. Out of 39 samples recovered from 13 healthy subjects over a 12-day period of fresh yogurt intake, 32 and 37 samples contained viable S. thermophilus (median value of 6.3 x 10(4) CFU g(-1) of feces) and L. delbrueckii (median value of 7.2 x 10(4)CFU g(-1) of feces), respectively. The results of the present study indicate that substantial numbers of yogurt bacteria can survive human gastrointestinal transit.  相似文献   

11.
This article proposes a simple steady-state method for measuring the effective diffusion coefficient of oxygen (D(e)) in gel beads entrapping viable cells. We applied this method to the measurement of D(e) in Ca- and Ba-alginate gel beads entrapping Saccharomyces cerevisiae and Pseudomonas ovalis. The diffusivity of oxygen through gel beads containing viable cells was measured within an accuracy of +/-7% and found not to be influenced by cell density (0-30 g/L gel), cell type, and cell viability in gel beads. The oxygen diffusivity in the Ca-alginate gel beads was superior to that of the Ba-alginate gel beads, and the D(e) in the Ca-alginate gel beads nearly equalled the molecular diffusion coefficient in the liquid containing the gel beads. The oxygen concentration profile in a single Ca-alginate gel bead was calculated and compared to the distribution of mycelia of Aspergillus awamori grown in that gel bead. This procedure indicated that the oxygen concentration profile is useful for the estimation of the thickness of the cell layer in a gel bead. Numerical investigation revealed that high effectiveness factors, greater than 0.8, could be obtained using microgel beads with a radius of 0.25 mm.  相似文献   

12.
Diffusion and partitioning of proteins in charged agarose gels.   总被引:4,自引:2,他引:2       下载免费PDF全文
The effects of electrostatic interactions on the diffusion and equilibrium partitioning of fluorescein-labeled proteins in charged gels were examined using fluorescence recovery after photobleaching and gel chromatography, respectively. Measurements were made with BSA, ovalbumin, and lactalbumin in SP-Sepharose (6% sulfated agarose), in phosphate buffers at pH 7 and ionic strengths ranging from 0.01 to 1.0 M. Diffusivities in individual gel beads (D) and in the adjacent bulk solution (D infinity) were determined from the spatial Fourier transform of the digitized two-dimensional fluorescence recovery images. Equilibrium partition coefficients (phi) were measured by recirculating protein solutions through a gel chromatography column until equilibrium was reached, and using a mass balance. Diffusion in the gel beads was hindered noticeably, with D/D infinity = 0.4-0.5 in each case. There were no effects of ionic strength on BSA diffusivities, but with the smaller proteins (ovalbumin and lactalbumin) D infinity increased slightly and D decreased at the lowest ionic strength. In contrast to the modest changes in diffusivity, there were marked effects of ionic strength on the partition coefficients of these proteins. We conclude that for diffusion of globular proteins through gel membranes of like charge, electrostatic effects on the effective diffusivity (Deff = phi D) are likely to result primarily from variations in phi with only small contributions from the intramembrane diffusivity.  相似文献   

13.
Using a well-mixed and temperature-led vessel, the diffusion characteristics of various solutes into spherical kappa-carrageenan gel beads were experimentally investigated. The diffusion coefficient of glucose was markedly affected by the glucose concentration and the operating temperature. In all cases the diffusivity obtained was noticeably smaller than that of glucose in pure water. The experimental data also indicated an inverse relationship between the diffusivity and the polymer concentration used in the gel preparation. As well, the glucose diffusivity was affected by the presence of other solutes in the glucose solution. Electrolytes such as ammonium sulfate, KCl, and CaCl(2) were observed to enhance the diffusion coefficient. On the other hand, the addition of arginine or bovine serum albumin had an adverse effect on the diffusivity. No diffusion of albumin into the gel beads was observed, and such a solute created a significant mass transfer resistance during the diffusion process.  相似文献   

14.
Human milk contains about 7% lactose and 1% human milk oligosaccharides (HMOs) consisting of lactose with linked fucose, N-acetylglucosamine and sialic acid. In infant formula, galactooligosaccharides (GOSs) are added to replace HMOs. This study investigated the ability of six strains of lactic acid bacteria (LAB), Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Streptococcus thermophilus and Leuconostoc mesenteroides subsp. cremoris, to digest HMO components, defined HMOs, and GOSs. All strains grew on lactose and glucose. N-acetylglucosamine utilization varied between strains and was maximal in L. plantarum; fucose utilization was low or absent in all strains. Both hetero- and homofermentative LAB utilized N-acetylglucosamine via the Embden-Meyerhof pathway. Lactobacillus acidophilus and L. plantarum were the most versatile in hydrolysing pNP analogues and the only strains releasing mono- and disaccharides from defined HMOs. Whole cells of all six LAB hydrolysed oNP-galactoside and pNP-galactoside indicating β-galactosidase activity. High β-galactosidase activity of L. reuteri, L. fermentum, S. thermophilus and L. mesenteroides subsp. cremoris whole cells correlated to lactose and GOS hydrolysis. Hydrolysis of lactose and GOSs by heterologously expressed β-galactosidases confirmed that LAB β-galactosidases are involved in GOS digestion. In summary, the strains of LAB used were not capable of utilizing complex HMOs but metabolized HMO components and GOSs.  相似文献   

15.
The use of pathogen-free plant material is the main strategy for controlling bacterial canker of tomato caused by Clavibacter michiganensis subsp. michiganensis. However, detection and isolation of this pathogen from seeds before field or greenhouse cultivation is difficult when the bacterium is at low concentration and associated microbiota are present. Immunomagnetic separation (IMS), based on the use of immunomagnetic beads (IMBs) coated with specific antibodies, was used to capture C. michiganensis subsp. michiganensis cells, allowing removal of non-target bacteria from samples before plating on non-selective medium. Different concentrations of IMBs and of two antisera were tested, showing that IMS with 10(6)IMBs/ml coated with a polyclonal antiserum at 1/3200 dilution recovered more than 50% of target cells from initial inocula of 10(3) to 10(0)CFU/ml. Threshold detection was lower than 10CFU/ml even in seed extracts containing seed debris and high populations of non-target bacteria. The IMS permitted C. michiganensis subsp. michiganensis isolation from naturally infected seeds with higher sensitivity and faster than direct isolation on the semiselective medium currently used and could become a simple viable system for routinely testing tomato seed lots in phytosanitary diagnostic laboratories.  相似文献   

16.
The diffusion characteristics of sucrose, a nutrient, and yohimbine, a secondary metabolite, in alginate gel beads, with or without entrapped periwinkle (Catharanthus roseus) or apple (Malus domestica) cells, were investigated. Effective diffusivities of both solutes in the gel beads were determined by two different methods from transient concentration changes in well-stirred solutions where the beads were suspended. The linear plot method developed in this work is easy to use and requires no data from the initial periods of diffusion experiments. It was found that while the cell-free beads provided only minor diffusional resistance to both solutes, the effective diffusivities of both solutes decreased significantly with the presence of cells in the beads and the amount of reduction was proportional to the amount of cell loading. Further, the effective diffusivity of sucrose appeared to be slightly larger than that of yohimbine under identical conditions. It was also observed that permeabilization of apple cells with dimethyl sulfoxide (DMSO) led to an increase in effective diffusivity with the effect being more significant for yohimbine.  相似文献   

17.
Effective diffusivity of lactose in active acidogenic biofilms was measured at 35 degrees C and pH 4.6 with a specially designed diffusion cell. The diffusion cell was designed and operated in such a way that the lactose concentrations on the surface and at the center of a living bacterial aggregate could be measured at steady state. As a model parameter in a widely accepted reaction-diffusion equation which describes lactose distribution in living biofilms, the effective diffusivity of lactose in the biofilms was found to be about 65% of the lactose diffusivity in free solutions. It was experimentally determined that the active biofilms had about 66% void volume made up of channels through which the lactose molecules were transported into the bacterial aggregates. Therefore, the decrease in lactose diffusivity was mainly caused by the biofilm's solid biomass fraction rather than the tortuosity of the channels. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
The overall diffusion coefficients for several low molecular weight solutes, such as glucose, fructose, sucrose, lactose, and vitamin B(12) have been determined in Ca-alginate membrane liquid-core capsules using the unsteady-state method following the release of solutes from the capsules to a well-stirred solution of limited volume. The diffusion coefficients obtained for saccharides were 5-20% lower than the corresponding diffusivity in water while for vitamin B(12) about 50% that of water. The diffusion coefficients of the investigated capsules were not influenced by the change in alginate concentration in the capsule membrane from 0.5 to 1.0%. Lower diffusivities and higher deviations from the diffusivity in water were obtained for higher molecular weight solutes.  相似文献   

19.
Bulgarian yogurts were manufactured and fortified with 8, 15 and 27 mg of iron kg(-1) of yogurt. The growth and acidifying activity of the starter culture bacteria Streptococcus thermophilus 13a and Lactobacillus delbrueckii subsp. bulgaricus 2-11 were monitored during milk fermentation and over 15 days of yogurt storage at 4 degrees C. Fortifying milk with iron did not affect significantly the growth of the starter culture during manufacture and storage of yogurt. Counts of yogurt bacteria at the end of fermentation of iron-fortified milks were between 2.1 x 10(10) and 4.6 x 10(10) CFU ml(-1), which were not significantly different from numbers in unfortified yogurts. In all batches of yogurt, the viable cell counts of S. thermophilus 13a were approximately three times higher than those of L. delbrueckii subsp. bulgaricus 2-11. Greater decrease in viable cell count over 15 days of storage was observed for S. thermophilus 13a compared to L. delbrueckii subsp. bulgaricus 2-11. Intensive accumulation of lactic acid was observed during incubation of milk and all batches reached pH 4.5 +/- 0.1 after 3.0 h. At the end of fermentation process, lactic acid concentrations in iron-fortified yogurts were between 6.9 +/- 0.4 and 7.3 +/- 0.5 g l(-1). The acidifying activity of starter culture bacteria in the control and iron-fortified milks was similar. There was no increase in oxidized, metallic and bitter off-flavors in iron-fortified yogurts compared to the control. Iron-fortified yogurts did not differ significantly in their sensorial, chemical and microbiological characteristics with unfortified yogurt, suggesting that yogurt is a suitable vehicle for iron fortification and that the ferrous lactate is an appropriate iron source for yogurt fortification.  相似文献   

20.
The chimeric plasmid pBN183 was first constructed in Escherichia coli by ligating the BamHI-digested E. coli plasmid pBR322 and a Bg/II-linearized streptococcal plasmid, pNZ18. The pBN183 transformed E. coli to ApR at a frequency of (8.2 +/- 1.2) x 10(5) colony forming units (CFU)/microgram DNA. Electrotransformation of Streptococcus thermophilus with pBN183 yielded CmR, ApS clones at a frequency of (2.6 +/- 0.3) x 10(1) CFU/microgram DNA. Plasmid screening with pBN183-transformed S. thermophilus clones revealed that ca. 70% of these transformants contained deleted plasmids. Plasmid pBN183A, a pBN183 deletion mutant lacking one copy of a tandemly arranged, highly homologous DNA sequence, was isolated for further study. It transformed E. coli to ApR and S. thermophilus to CmR with frequencies of (4.8 +/- 0.1) x 10(5) and (8.1 +/- 0.2) x 10(2) CFU/microgram DNA, respectively. Screening of S. thermophilus transformants did not show the presence of deleted plasmids. Based on the structure of pBN183A, a new shuttle plasmid, pDBN183, was constructed from pBN183 by removal of the small (1.2 kb) Sa/I fragment. Transformation frequencies of pDBN183 were (5.0 +/- 1.3) x 10(5) and (4.6 +/- 0.2) x 10(2) CFU/microgram DNA with E. coli and S. thermophilus, respectively. In contrast to the parent pBN183, only 17% of the pDBN183-transformed S. thermophilus contained deleted plasmids. Plasmid copy numbers of the three vectors in E. coli were estimated at 17-18 per chromosome. The three plasmids conferred ApR and CmR to E. coli, but only CmR to S. thermophilus. The insertion of a Streptomyces cholesterol oxidase gene (choA) into pDBN183 did not affect the plasmid's stability in Lactobacillus casei, but resulted in deletion of the recombinant DNA in S. thermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号