首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
几丁质合成酶(CS)是几丁质合成的关键酶,它具有3个结构域:结构域A、结构域B和结构域C,其中结构域B是催化域。根据氨基酸序列的差异,几丁质合成酶分为两类:CS-A及CS-B,分别在表皮及围食膜基质中催化合成几丁质。关于几丁质合成有2种假想模型。有多种抑制剂可以抑制几丁质的合成,其中核苷肽抗生素类及核苷磷酸类作用于CS的催化部位,是竞争性抑制剂,其它抑制剂的作用机理仍不明确。  相似文献   

2.
Cellulose is a linear homopolymer of beta 1-4 linked glucose residues. Chitin is similar to cellulose in structure, and can be described as cellulose with the hydroxyl group on the C2 carbon replaced by an acetylamine group. Both cellulose and chitin form tightly packed, extensively hydrogen-bonded micro-fibrils. Up to now, binding of cellulase catalytic domains (CDs) to chitin has not been reported. In this article, binding of the CDs of Thermobifida fusca Cel6A, Cel6B, Cel48A, Cel5A, and Cel9A to alpha-chitin was investigated. The CDs of endocellulases, Cel6A and Cel5A did not bind to alpha-chitin; one exocellulase, Cel48A CD bound alpha-chitin moderately well; and the exocellulase Cel6B CD and the processive endocellulase Cel9A CD bound extremely tightly to alpha-chitin. Only mutations of Cel6B W329C, W332A and G234S and Cel9A Y206F, Y206S and D261A/R378K caused weaker binding to alpha-chitin than wild-type, and all these mutations were of residues near the catalytic center. One mutant enzyme, Cel9A D261A/R378K had weak chitinase activity, but no soluble products were detected. Chitotriose and chitotetraose were docked successfully to the catalytic cleft of Cel9A. In general, the positioning of the sugar residues in the model structures matched the cellooligosaccharides in the X-ray structure. Our results show that the binding of chitin by a cellulase can provide additional information about its binding to cellulose.  相似文献   

3.
The interactions of estrogenic (nonylphenol, dicofol, atrazine), androgenic (organotins, phthalates, fenarimol) and anti-androgenic compounds (vinclozolin, diuron, p,p'-DDE) with key enzymatic activities involved in both synthesis and metabolism of sex hormones was investigated. Carp testicular microsomes incubated in the presence of androstenedione and different xenobiotics evidenced higher sensitivity of 5alpha-reductase activity than 17beta-hydroxysteroid dehydrogenase activity towards those chemicals. Dicofol, organotins and phthalates were among the most effective inhibitors. In contrast, ovarian synthesis of maturation-inducing hormones (20alpha- and 20beta-hydroxysteroid dehydrogenase activities) were enhanced by nonylphenol, dicofol, fenarimol and p,p'-DDE. Metabolic clearance pathways of hormones were also affected. Fenarimol, nonylphenol and triphenyltin inhibited the glucuronidation of testosterone and estradiol at concentrations as low as 10, 50 and 100 microM, respectively. Triphenyltin, tributyltin and nonylphenol were also inhibitors of estradiol sulfation with IC(50) values of 17, 18 and 41 microM. Overall, the data indicates the interaction of selected chemicals with key enzymatic pathways involved in both synthesis and metabolism of sex hormones. This interference might be one of the underlying mechanisms for the reported hormonal disrupting properties of the tested compounds, and might finally affect physiological processes such as gamete growth and maturation.  相似文献   

4.
Biologically active peptide fragments derived from the proteolytic cleavage of β-endorphin (βE) have been shown to be present in the brain. Based on clinical results using some of these fragments in neuropsychiatric disease studies we investigated the in vitro metabolism of βE by twice-washed membrane homogenates of postmortem putamen from sex and age matched controls versus subjects with a diagnosis of schizophrenia. The present study demonstrates that frozen (−80°C) postmortem human tissues are viable for these studies and that metabolism in control tissue proceeds similarly to fresh tissues. Furthermore, a significant increase in the formation of the putative neuroleptic-like peptide fragment desenkephalin-γ-endorphin in postmortem schizophrenic putamen versus controls was shown. A significant decrease in the formation of βE 6–21 was also reported. These data suggest that an approach using postmortem human brain is possible in studying β-endorphin catabolism and is therefore applicable to other neuropeptide systems.  相似文献   

5.
Nucleotide sequences of the chitin synthase 2 (CHS2) gene of seven species, Malassezia furfur, M. globosa, M. obtusa, M. pachydermatis, M. restricta, M. slooffiae and M. sympodialis, were analyzed for their phylogenetic relationship. About 620-bp genomic DNA fragments of the CHS2 gene were amplified from these Malassezia species by polymerase chain reaction (PCR) and sequenced. The CHS2 nucleotide sequences of these Malassezia species showed more than 95% similarity between the species. A phylogenetic analysis of the nucleotide sequences of CHS2 gene fragments of seven Malassezia species revealed that the species were genetically distinct from each other.  相似文献   

6.
Estradiol-17β metabolism was studied in two female Asian elephants (Elephas maximus). In an initial study, 500 μCi of tritiated estradiol-17β was injected iv into a single animal, and 0, 30 and 60 min serum samples were collected as well as all excreted urine and feces for 24 hr. In a second study, 1.5 mg unlabeled estradiol-17β was injected iv into a second animal and 0, 5, 15, 30, and 60 min serum samples and a 30 min urine sample were collected postinjection. Analyses of samples from both studies demonstrated a rapid conversion of free estradiol to conjugated forms in the serum. The first (5 min) serum sample following the injection of unlabelled estradiol contained unconjugated estradiol: conjugated estradiol: conjugated estrone at a ratio of 60: 29: 10, respectively, and at 30 min a ratio of 33: 43: 24. The urinary estrogen metabolites were in the conjugated form with an estradiol: estrone ratio of 60: 40. No radiolabeled estrogen was found in the fecal samples during the 24 hr following administration of the radiolabeled estradiol. These data indicate a rapid clearance of circulating free estradiol in the elephant, with a major metabolite in the serum and urine being estradiol conjugate. © 1992 Wiley-Liss, Inc.  相似文献   

7.
8.
Phenol β-glucosyltransferase (PGT; EC 2.4.1.35) was studied in feeding fifth stadium larvae of the tobacco hornworm, Manduca sexta, using reversed-phase HPLC with absorbance detection to separate and quantify both the model substrate, p-nitrophenol (PNP), and the product, p-nitrophenyl β-D-glucopyranoside (PNP-Glc). About 90% of total PGT activity in tissue homogenates was associated with the particulate fraction (15,000g), with the remainder in the microsomal fraction. PGT activity was observed in all tissues, with highest activities in the labial gland and fat body. Appreciable activity occurred in midgut and hindgut tissue but none was found in hemolymph. PGT activity was also observed in eggs and larval fat body at different times during development. Activity was optimal at pH 7.5–9 and was highest with UDP-Glc as a glucose donor. However, appreciable PGT activity was observed with dTDP-Glc or GDP-Glc in place of UDP-Glc. The divalent cations Ca2+, Co2+, Mg2+, and Mn2+ stimulated activity, whereas Zn2+ and Hg2+, as well as pretreatment with the detergent Triton X-100, were inhibitory. Endogenous β-glucosidase in PGT-enriched fractions, especially from the midgut, antagonized the β-glucossylation process, and interference was minimized with higher pH and the addition of D-gluconic acid lactone to the incubation mixtures. The possible role of transglucosylation in the detoxication of phenolic xenobiotics and biotransformation of endogenous phenolic compounds in insects is discussed. Comparisons of PGT with some glycosyltransferases involved in endogenous and xenobiotic conjugation in insects and other organisms are reviewed. © 1992 Wiley-Liss, Inc.  相似文献   

9.
Abstract Chitinase catalyzes β‐1,4‐glycosidic linkages in chitin and has attracted research interest due to it being a potential pesticide target and an enzymatic tool for preparation of N‐acetyl‐β‐D‐glucosamine. An individual insect contains multiple genes encoding chitinases, which vary in domain architectures, expression patterns, physiological roles and biochemical properties. Herein, OfCht5, the glycoside hydrolase family 18 chitinase from the widespread lepidopteran pest Ostrinia furnacalis, was cloned, expressed in the yeast Pichia pastoris and biochemically characterized in an attempt to facilitate both pest control and biomaterial preparation. Complementary DNA sequence analysis indicated that OfCHT5 consisted of an open reading frame of 1 665‐bp nucleotides. Phylogenic analysis suggested OfCht5 belongs to the Group I insect chitinases. Expression of OfCht5 in Pichia pastoris resulted in highest specific activity after 120 h of induction with methanol. Through two steps of purification, consisting of ammonium sulfate precipitation and metal chelating chromatography, about 7 mg of the recombinant OfCht5 was purified to homogeneity from 1 L culture supernatant. OfCht5 effectively converted colloidal chitin into chitobiose, but had relatively low activity toward α‐chitin. When chitooligosaccharides [(GlcNAc)n, n= 3–6] were used as substrates, OfCht5 was observed to possess the highest catalytic efficiency parameter toward (GlcNAc)4 and predominantely hydrolyzed the second glycosidic bond from the non‐reducing end. Together with β‐N‐acetyl‐D‐hexosaminidase OfHex1, OfCht5 achieved its highest efficiency in chitin degradation that yielded N‐acetyl‐β‐D‐glucosamine, a valuable pharmacological reagent and food supplement, within a molar concentration ratio of OfCht5 versus OfHex1 in the range of 9 : 1–15 : 1. This work provides an alternative to existing preparation of chitinase for pesticides and other applications.  相似文献   

10.
11.
12.
13.
Kuo-Chen Chou 《Proteins》1995,21(4):319-344
The development of prediction methods based on statistical theory generally consists of two parts: one is focused on the exploration of new algorithms, and the other on the improvement of a training database. The current study is devoted to improving the prediction of protein structural classes from both of the two aspects. To explore a new algorithm, a method has been developed that makes allowance for taking into account the coupling effect among different amino acid components of a protein by a covariance matrix. To improve the training database, the selection of proteins is carried out so that they have (1) as many non-homologous structures as possible, and (2) a good quality of structure. Thus, 129 representative proteins are selected. They are classified into 30 α, 30 β, 30 α + β, 30 α/β, and 9 ζ (irregular) proteins according to a new criterion that better reflects the feature of the structural classes concerned. The average accuracy of prediction by the current method for the 4 × 30 regular proteins is 99.2%, and that for 64 independent testing proteins not included in the training database is 95.3%. To further validate its efficiency, a jackknife analysis has been performed for the current method as well as the previous ones, and the results are also much in favor of the current method. To complete the mathematical basis, a theorem is presented and proved in Appendix A that is instructive for understanding the novel method at a deeper level. © 1995 Wiley-Liss, Inc.  相似文献   

14.
8-iso-PGF isoprostane (IP) is one of the most-used markers of lipid peroxidation in experimental models and humans. After its formation, it is promptly metabolized to 2,3 dinor (DIN) in peroxisomes.Conjugated linoleic acid (CLA) is preferentially β-oxidized in peroxisomes which may compete with IP, and thereby may affect its metabolism.In order to verify whether CLA is able to influence IP formation and/or metabolism and to explain the mechanism, we challenged rats supplemented with CLA or with triolein (as a control fatty acid), with a single dose of carbon tetrachloride (CCl4) or of bacterial lipopolysaccharide (LPS). The results showed that IP and its precursor arachidonic acid hydroperoxide, as well as malondialdheyde (MDA), increase significantly in the liver of rats challenged with CCl4, irrespective of the diet, while in LPS-treated rats only nitrites in liver and isoprostane in plasma increase. On the other hand, the peroxisomal β-oxidation products of IP, the DIN, is significantly lower in the CLA group with respect to control and triolein groups.To further investigate whether this is due to competition between CLA and IP at the cellular level, we incubated human fibroblasts from healthy subjects or patients with adrenoleukodystrophy (ALD), with CLA and/or commercially available IP. The rationale of this approach is based on the deficient peroxisomal β-oxidation of fibroblasts from ALD patients, leading to a reduced formation of DIN. In both normal and ALD cells, the presence of CLA significantly inhibits the formation of DIN from IP.We may conclude that both in vitro and in vivo studies strongly suggest that CLA may impair IP catabolism in peroxisomes. Consequently an increase of IP, as a sole result of CLA intake, cannot be considered as a marker of lipid peroxidation.  相似文献   

15.
Donald T. Downing 《Proteins》1995,23(2):204-217
Mammalian epidermal keratin molecules adopt rod-shaped conformations that aggregate to form cytoplasmic intermediate filaments. To investigate these keratin conformations and the basis for their patterns of molecular association, graphical methods were developed to relate known amino acid sequences to probable spacial configurations. The results support the predominantly α-helical conformation of keratin chains, interrupted by short non-α-helical linkages. However, it was found that many of the linkages have amino acid sequences typical of β-strand conformations. Space-filling atomic models revealed that the β-strand sequences would permit the formation of 2-chain and 4-chain cylindrical β-helices, fully shielding the hydrophobic amino acid chains that alternate with hydrophilic residues in these sequences. Because of the locations of the β-helical regions in human and mouse stratum corneum keratin chains, only homodimers of the keratins could interact efficiently to form 2-chain and 4-chain β-helices. Tetramers having the directions and degrees of overlap of constituent dimers that have been identified by previous investigators are also predicted from the interactions of β-helical motifs. Heterotetramers formed from dissimilar homodimers could combine, through additional β-helical structures, to form higher oligomers having the dimensions seen in electron microscopic studies. Previous results from chemical crosslinking studies can be interpreted to support the concept of homodimers rather than heterodimers as the basis for keratin filament assembly. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The main goal of the present work was to compare the ability of human prostate cancer (PCa) cells to metabolize testosterone (T) in living conditions. To this end we studied three different human PCa cell lines (LNCaP, DU145 and PC3) having different hormone-sensitive status and capability of response to androgens. We used an original approach which allows the evaluation of conversion metabolic rates in growing cells after administration of labeled steroid precursor (presently T), at physiological concentrations (1–10 nM). Analysis of both precursor degradation and formation of several products was carried out using reverse phase-high performance liquid chromatography (RP-HPLC) and “on line” radioactive detection. Comparison of the three human PCa cells revealed that their metabolic aptitude differed in many respects: (i) rates of precursor degradation, (ii) different products' formation, and (iii) extent of conjugate production. In detail, PC3 cells quickly degraded T and exhibited high formation rates of androstenedione (A-4-ene-Ad); both DU145 and LNCaP cells mostly retained high levels of unconverted T, with a limited production of A-4-ene-Ad and its 17-keto derivatives (if any). Either LNCaP or DU145 cells generated a relatively high amount of dihydrotestosterone (DHT). In contrast, neither DHT nor its main metabolites were detected in PC3 cells at both short and longer incubation times. As expected, T degradation and A-4-ene-Ad production were highly correlated (r = 0.97; P < 0.03); similarly, A-4-ene-Ad and DHT formation showed a negative, significant correlation. Negligible production of conjugates was noted in both PC3 and DU145 cells, whilst it was remarkable in LNCaP cells (ranging from 43 to 57%). Overall, our data indicate that human PCa cells degrade T quite differently, favoring alternatively reductive or oxidative patterns of androgen metabolism.  相似文献   

17.
Prostaglandin H synthase (PHS) has gained interest as a drugmetabolizing enzyme and has been shown to cooxidize and metabolically activate diethylstilbestrol (DES) in vitro. Both 7,8-benzoflavone (α-naphthoflavone, ANF) and 5,6-benzoflavone (β-naphthoflavone, BNF) have now been studied for their effects on PHS from ram seminal vesicle microsomes by means of several in vitro assays. The PHS-catalyzed cooxidation of DES, as measured by high-performance liquid chromatography (HPLC) analysis, is inhibited by BNF and ANF at micromolar concentrations, with median inhibitory concentrations (IC-50) of<20 and 40 μM, respectively. The oxidation of DES is inhibited whether it is initiated by arachidonic acid or by hydrogen peroxide, indicating that the benzoflavones inhibit PHS by a mechanism different from that of indomethacin. Monitoring of cyclooxygenase activity in an oxygraph also reveals an inhibition of PHS by BNF which depends only weakly on arachidonic acid concentration; inhibition by ANF is less pronounced under these conditions. Since PHS-catalyzed conversion of the benzoflavone compounds was detected under conditions permitting cooxidation, the inhibition of PHS by benzoflavones in vitro could either be a direct effect or possibly mediated via metabolites. Our data imply that ANF and BNF, in addition to their well-known role as modifiers of mixed-function oxidases, can affect the PHS-catalyzed metabolism of xenobiotics. This is discussed in the context of adverse effects caused by DES in vivo and in cell culture and must be taken into account when interpreting the modifying effect of benzoflavones on these endpoints.  相似文献   

18.
Previous studies have shown that cytoplasmic intermediate filaments, other than the keratins, are each constructed from a single type of polypeptide chain. Studies involving chemical crosslinking between lysine groups have shown that assembly of the filaments begins with the formation of dimers in which the peptide chains are parallel and in exact register, and that these dimers further associate in antiparallel patterns having specific degrees of overlap. In the present study, molecular modeling of the conformations of vimentin molecules indicated that lysine side chains in identical positions in regions of α-helix in parallel chains might be unable to be linked because they are on opposite sides of the coiled coil hydrophobic core. Examination of published data on chemical crosslinking of lysines in vimentin confirmed that there were no instances of linkage within dimers between the nine pairs of identical lysines that lie more than one position within α-helical regions in parallel chains. Even among linkages that apparently were between dimers, only one of the 11 linkage products identified involved lysines that were both within an α-helical region. In 10 of the 11 identified linkages between dimers, one or both of the linked lysines were in regions of random coil conformation. These results of molecular modeling indicate that relative motion between polypeptide chains in oligomers of intermediate filament proteins is not sufficient to overcome an orientation of lysine groups that is unfavorable for their chemical linkage. This finding supports the interpretations of keratin cross-linking data indicating that parallel homodimers are the basis for keratin intermediate filament assembly. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters.  相似文献   

20.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号