首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under natural selection, wing shape is expected to evolve to optimize flight performance. However, other selective factors besides flight performance may influence wing shape. One such factor could be sexual selection in wing sexual ornaments, which may lead to alternative variations in wing shape that are not necessarily related to flight performance. In the present study, we investigated wing shape variations in a calopterygid damselfly along a latitudinal gradient using geometric morphometrics. Both sexes show wing pigmentation, which is a known signal trait at intra‐ and interspecific levels. Wing shape differed between sexes and, within the same sex, the shape of the hind wing differed from the front wing. Latitude and body size explained a high percentage of the variation in wing shape for female front and hind wings, and male front wings. In male hind wings, wing pigmentation explained a high amount of the variation in wing shape. On the other hand, the variation in shape explained by pigmentation was very low in females. We suggest that the conservative morphology of front wings is maintained by natural selection operating on flight performance, whereas the sex‐specific differences in hind wings most likely could be explained by sexual selection. The observed sexual dimorphism in wing shape is likely a result of different sex‐specific behaviours. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 263–274.  相似文献   

2.
Aedes albopictus (Skuse) is an invasive mosquito species found across the southern U.S. with range expansion into many northern states. Intra‐ and interspecific larval competition have been evaluated for Ae. albopictus with respect to subsequent adult size, immature and adult survivability, and its capacity to vector pathogens as an adult. However, limited data are available on egg production as related to larval rearing conditions. Because Ae. albopictus is a container‐inhabiting mosquito that oviposits in resource‐limited habitats, it is found under variable density‐dependent conditions. Therefore, we examined the impact of specific rearing conditions on Ae. albopictus clutch size and adult body size; comparing the egg production values and wing lengths from known developmental densities to those from field‐collected populations. Field populations varied significantly among collection sites in mean clutch size (23 to 46). These clutch sizes were comparable to the mean clutch sizes of females reared at the larval densities of nine (20 eggs) and three (53 eggs) larvae per 3 ml of water in the laboratory. Field populations experienced density‐dependent effects impacting adult mosquito size. Mosquitoes from the four sample sites had mean wing lengths of 1.99, 2.47, 2.51, and 2.54 mm, which were less than the mean wing length of mosquitoes reared at larval densities of three larvae per 3 ml of water (2.57 mm).  相似文献   

3.
The effects of larval density on the wing form determination of female tobacco thrips, Frankliniella fusca, were investigated by rearing thrips on leaf disks at 27.5 °C. The developmental period, head width, body length, and forewing length of individuals in each wing morph were determined to assess the relationships among larval density, growth, and wing form. Data showed that higher rearing densities increased the production of female F. fusca brachypters. There was no consistent difference in the mean developmental periods between the two wing morphs or among all 5 density treatments. The body length of females tended to decrease with increasing rearing density, but there was no significant difference in body size between the two wing morphs when they were reared under the same density level.  相似文献   

4.
5.
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal‐mating clade are smaller than those in the adult‐mating clade. Interestingly, we find that high‐altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high‐altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.  相似文献   

6.
Summary The pattern of aldehyde oxidase (AO) activity was determined in wing discs of Drosophila melanogaster larvae homozygous for the mutants apt 73n, Beaded, and vestigial (vg) in order to determine if reduction in field size in the pouch could be related to alterations of the wild-type AO pattern, as suggested by the Kauffman (1978) hypothesis. The pattern in wild-type discs was resolved into six areas for comparison with mutant discs. vg discs developed at 25° C showed restriction of the pattern into a small area on the anterior side of the disc, and comparison of vg and wild-type prepupal wings allowed positive identification of the AO pattern elements which remained. AO patterns in vg wing discs grown at 27°, 29°, and 31° C were progressively more complete and similar to wild-type, reflecting the reduction in cell death in discs grown at higher temperatures. These results show that cell loss during the third instar in vg development at 25° C is responsible for the alteration of the AO pattern, rather than field size reduction, and that determination of the pattern must take place much earlier than the time of its first appearance during the third larval instar, and before cell death in vg discs begins. Thus mutants acting at earlier stages will be necessary for further tests of the Kauffman hypothesis.  相似文献   

7.
Both development and evolution under chronic malnutrition lead to reduced adult size in Drosophila. We studied the contribution of changes in size vs. number of epidermal cells to plastic and evolutionary reduction of wing size in response to poor larval food. We used flies from six populations selected for tolerance to larval malnutrition and from six unselected control populations, raised either under standard conditions or under larval malnutrition. In the control populations, phenotypic plasticity of wing size was mediated by both cell size and cell number. In contrast, evolutionary change in wing size, which was only observed as a correlated response expressed on standard food, was mediated entirely by reduction in cell number. Plasticity of cell number had been lost in the selected populations, and cell number did not differ between the sexes despite males having smaller wings. Results of this and other experimental evolution studies are consistent with the hypothesis that alleles which increase body size through prolonged growth affect wing size mostly via cell number, whereas alleles which increase size through higher growth rate do so via cell size.  相似文献   

8.
Winter geometrid moths exhibit sexual dimorphism in wing length and female‐specific flightlessness. Female‐specific flightlessness in insects is an interesting phenomenon in terms of sexual dimorphism and reproductive biology. In the winter geometrid moth, Protalcis concinnata (Wileman), adult females have short wings and adult males have fully developed wings. Although the developmental process for wing reduction in Lepidoptera is well studied, little is known about the morphology and the developmental pattern of short‐winged flightless morphs in Lepidoptera. To clarify the precise mechanisms and developmental processes that produce short‐winged morphs, we performed morphological and histological investigations of adult and pupal wing development in the winter geometrid moth P. concinnata. Our findings showed that (a) wing development in both sexes is similar until larval‐pupal metamorphosis, (b) the shape of the sexually dimorphic wings is determined by the position of the bordering lacuna (BL), (c) the BL is positioned farther inward in females than in males, and (d) after the short pupal diapause period, the female pupal wing epithelium degenerates to approximately two‐thirds its original size due to cell death. We propose that this developmental pattern is a previously unrecognized process among flightless Lepidoptera.  相似文献   

9.
Lepidopteran insects present a complex organization of appendages which develop by various mechanisms. In the mulberry silkworm,Bombyx mori a pair of meso- and meta-thoracic discs located on either side in the larvae gives rise to the corresponding fore- and hind-wings of the adult. These discs do not experience massive cell rearrangements during metamorphosis and display the adult wing vein pattern. We have analysed wing development inB. mori by two approaches, viz., expression of patterning genes in larval wing discs, and regulatory capacities of larval discs following explantation or perturbation. Expression of Nubbin is seen all over the presumptive wing blade domains unlike inDrosophila, where it is confined to the hinge and the wing pouch. Excision of meso- and meta-thoracic discs during the larval stages resulted in emergence of adult moths lacking the corresponding wings without any loss of thoracic tissues suggesting independent origin of wing and thoracic primordia. The expression of wingless and distal-less along the dorsal/ventral margin in wing discs correlated well with their expression profile in adultDrosophila wings. Partially excised wing discs did not showin situ regeneration or duplication suggesting their early differentiation. The presence of adult wing vein patterns discernible in larval wing discs and the patterns of marker gene expression as well as the inability of these discs to regulate growth suggested that wing differentiation is achieved early inB. mori. The timings of morphogenetic events are different and the wing discs behave like presumptive wing buds opening out as wing blades inB. mori unlike evagination of only the pouch region as wing blades seen inDrosophila.  相似文献   

10.
The temperature-sensitive mutant l(3)c43hs1 is lethal at the restrictive temperature late in the last larval instar and has wing disks that show excessive growth when larvae are reared at 25°C. Such mutant disks give rise to defective wings showing duplications and deficiencies. Abnormal folding patterns are localized to the region between the wing pouch and the area where adepithelial cells are found; the disks retain an epithelial morphology. Apoptotic cell death is distributed throughout the wing disks without any obvious concentration of dead cells in a specific area. Cell death is seen as early as 12 hr after a shift to the restrictive temperature. Temperature shift experiments also show that cell death precedes the onset of overgrowth, but since the spatial distribution of death is not localized to the regions of abnormal folds, it is unlikely that cell death and overgrowth are causally related.  相似文献   

11.
Animal body size and tissue size depend on genetic and environmental factors, but the precise mechanisms of how tissue size is determined in proportion to body size remain unknown. Here we focused on wings from three nymphalid butterflies, Junonia orithya (Linnaeus), Vanessa cardui (Linnaeus) and Danaus chrysippus (Linnaeus) (Lepidoptera: Nymphalidae), to examine the contributions of the number and size of scales to macroscopic structures, represented by wing compartments, and to investigate the positional dependence of scale size, density and arrangement. The whole wing area and wing compartment area exhibited a high correlation in all three species. Similarly, the wing compartment area and the blue or orange area showed a high correlation in three species, indicating isometric relationships among wings of different sizes. However, only in J. orithya, the blue area was highly correlated with the number of constituent scales and, to a lesser extent, with scale size. In contrast, reasonable correlations were obtained between the blue or orange area and the number of rows in all three species. These results suggest that variations of the background area accompany changes in the number of scales through changes in the number of rows. In a background region of the compartment, scale size gradually decreased and scale density increased from the proximal to the distal side in all three species. Our findings suggest that butterfly wing tissue size is determined primarily by the number of scale cells and secondarily by the size change of scale cells before or during the period of row arrangement.  相似文献   

12.
Summary A number of mutants of Drosophila melanogaster are characterized by the absence of structures present in the wild type. Imaginal discs from the wing mutants vestigial, apterous-Xasta, Beadex and cut and from the eye mutants Bar, eyeless and lozenge were examined by light and electron microscopy. In all these mutants, with the exception of lozenge, clear evidence of degeneration was found. The onset and duration of degeneration and the number and distribution of dying cells were specific characteristics of each mutant. In most cases the degenerate areas of the disc could be correlated with the missing parts of the adult wing or eye. In contrast, in wild type wing and eye discs and in wing discs from the mutant miniature, which has a wing reduced in size but fully formed, extensive cell death was not observed.The ultrastructural features of the degenerating areas weresimilar in all the mutants studied. Conspicuous aspects of the cytolytic process included condensation and fragmentation of the dying cells followed by phagocytosis of the cell fragments by neighboring disc cells.The results indicate that localized cell death during development is a widespread occurrence among Drosophila mutants which exhibit structural deficiències.  相似文献   

13.
Temperature affects both the biology and morphology of mosquito vectors. Geometric morphometrics is a useful new tool for capturing and analyzing differences in shape and size in many morphological parameters, including wings. We have used this technique for capturing the differences in the wings of the malaria vector Anopheles superpictus, using cohorts reared at six different constant temperatures (15°, 20°, 25°, 27°, 30°, and 35° C) and also searched for potential correlations with the life tables of the species. We studied wing shape in both male and female adults, using 22 landmarks on the wing in relation to ecological parameters, including the development rate. The ecological zero was calculated as 9.93° C and the thermal constant as 296.34 day‐degrees. The rearing temperature affects egg, larval, and pupal development and also the total time from egg to adult. As rearing temperatures increased, longevity decreased in both sexes. In An. superpictus, Ro value and productivity correlated with the statistically significant gradual deformations in the wing shape related to size in both sexes. These deformations directly linked to differences in immature rearing temperatures. Analysis using PCA and UPGMA phenograms showed that although wings of females became narrower dorsoventrally as the temperature increased, they became broader in males. Comparisons of the wing landmarks indicated the medial part of the wing was most affected by larval rearing temperatures, showing relatively more deformations. Algorithmic values of the life tables were determined in correlation with the results of geometric morphometrics. Comparisons of centroid sizes in the cohorts showed that overall wing size became smaller in both sexes in response to higher rearing temperatures.  相似文献   

14.
Larvae of the salamander, Hynobius retardatus, are carnivorous, and even though there are two morphs, a typical morph and a broad-headed or “cannibal” morph, both are cannibalistic. They also sometimes eat other large prey, for example larvae of the frog, Rana pirica. In natural habitats, use of both conspecific and R. pirica larvae as food may contribute more strongly to high survival and substantially to fitness when larval densities are higher, because early-stage H. retardatus larvae sometimes experience scarcity of their typical prey. In cannibalistic oviparous amphibians, larger individuals that developed from larger eggs can more efficiently catch and consume larger prey and thus their survival may be better than that of smaller individuals developed from smaller eggs. Populations might therefore diverge in respect of egg size in response to variation in the density of conspecific and R. pirica larvae in natural ponds, with eggs being larger when larval density is higher. I examined how variance in hatchling size correlated with the incidence of cannibalism, and whether increasing larval density in natural ponds correlated with increasing egg size. Variance in initial larval body size facilitated cannibalism, and egg size increased as larval density in the ponds increased. In ponds with high larval density, where cannibalism and large prey consumption is a critical factor in offspring fitness, the production of fewer clutches with larger eggs, and thus of fewer and larger offspring, results in greater maternal fitness. Variation among the mean egg size in populations is likely to represent a shift in optimum egg size across larval density gradients.  相似文献   

15.
Konjev Desender 《Oecologia》1989,78(4):513-520
Summary The wing-polymorphic ground beetle Pogonus chalceus MARSHAM was subjected to crossbreeding experiments under different laboratory conditions in order to estimate the genetic and environmental contributions to the total phenotypic variance in different morphological traits related to relative wing development and body size. Heritability of relative wing development appears to be strong. Beetle size also seems genetically determined in some cases, but separation of male and female parent contribution invariably shows a maternal effect. These results are tested in a breeding experiment with a high number of progeny from one parental pair, reared at two temperatures and at two levels of food supply. Relative wing development is not influenced by these environmental conditions, as expected, but different temperatures add significant variance to the body size values. The experimental results are used to explain interdemic variation in these morphological traits, as observed in three isolated field populations. The reproductive effort under optimum breeding conditions is higher in macropterous beetles than in beetles with reduced wings, but this could result from their larger body size. Migtion seems to be the most plausible underlying evolutionary mechanism for the observed wing reduction in older populations.  相似文献   

16.
Butterflies have distinctively large wings relative to body size, but the functional and fitness consequences of wing size for butterflies are largely unknown. I use natural and experimentally generated variation in wing surface area to examine how decreased wing size affects flight and survival in a population of the western white butterfly, Pontia occidentalis. In the laboratory, experimental reductions in wing area (reduced-wings manipulation) significantly increased wingbeat frequencies of hovering butterflies, whereas a control manipulation had no detectable effects. In contrast, behavioral observations and mark-release-recapture (MRR) studies in the field detected no significant differences in flight activity, initial dispersal rates, or recapture probabilities among treatment groups. Estimated selection coefficients indicated that natural variation in wing size, body mass, and wing loading in the population were not significantly correlated with survival in the two MRR studies. In two mark-recapture studies with manipulated butterflies, survival probabilities were not significantly different for reduced-wings individuals compared with control or unmanipulated individuals. In summary, experimental reductions in wing area significantly altered aspects of flight in the laboratory, but did not detectably alter flight or survival in the field for this population. The large wing size typical of butterflies may reduce the functional and survival consequences of wing size variation within populations.  相似文献   

17.
18.
Jean Delcour  F. A. Lints 《Genetica》1966,37(1):543-556
Variations in the wing size ofDrosophila melanogaster are induced by controlled internal (sex, degree of inbreeding) and external (temperature, egg-density) conditions. Moreover, uncontrolled individual variations of the wing size, within each of the experimental groups, are considered. A new mounting technique of the wings, for the purpose of wing length and cell density measurements, is reported.From the inter-and the intra-group analyses, the following relationships were found: 1. Wing size variations are positively correlated with both cell size and total cell number. 2. Variation of the duration of development is positively correlated with the duration of the cellular generation time. Some contradictions in the existing literature on this subject are discussed.Centre National de Radiobiologie et de Génétique  相似文献   

19.
Most ectotherms show increased body size at maturity when reared under colder temperatures. In principle, temperature could produce this outcome by influencing growth, proliferation and/or death of epidermal cells. Here we investigated the effects of rearing temperature on the cell size and cell number in the wing blade, the basitarsus of the leg and the cornea of the eye of Drosophila melanogaster from two populations at opposite ends of a South American latitudinal cline. We found that, in both strains of D. melanogaster and in both sexes, a decrease in rearing temperature increases the size of the wings, legs and eyes through an effect on epidermal cell size, with no significant change in cell number. Our results indicate that temperature has a consistent effect on cell size in the Drosophila epidermis and this may also apply to other cell types. In contrast, the evolutionary effects of temperature on the different organs are not consistent. We discuss our findings in the context of growth control in Drosophila.  相似文献   

20.
Urbanization implies a dramatic impact on ecosystems, which may lead to drastic phenotypic differences between urban and nonurban individuals. For instance, urbanization is associated with increased metabolic costs, which may constrain body size, but urbanization also leads to habitat fragmentation, which may favor increases in body mass when for instance it correlates with dispersal capacity. However, this apparent contradiction has rarely been studied. This is particularly evident in China where the urbanization process is currently occurring at an unprecedented scale. Moreover, no study has addressed this issue across large geographical areas encompassing locations in different climates. In this regard, Barn Swallows (Hirundo rustica) are a suitable model to study the impact of urbanization on wild animals because they are a widely distributed species tightly associated with humans. Here, we collected body mass and wing length data for 359 breeding individuals of Barn Swallow (H. r. gutturalis) from 128 sites showing different levels of urbanization around the whole China. Using a set of linear mixed‐effects models, we assessed how urbanization and geography influenced body size measured using body mass, wing length, and their regression residuals. Interestingly, we found that the impact of urbanization was sex‐dependent, negatively affecting males’ body mass, its regression residuals, and females’ wing length. We also found that northern and western individuals were larger, regarding both body mass and wing length, than southern and eastern individuals. Females were heavier than males, yet males had slightly longer wings than females. Overall, our results showed that body mass of males was particularly sensitive trait to urbanization, latitude, and longitude, while it only showed a weak response to latitude in females. Conversely, while wing length showed a similar geographical pattern, it was only affected by urbanization in the case of females. Further research is needed to determine whether these phenotypic differences are associated with negative effects of urbanization or potential selective advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号