首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms are able to interact with metal ions in aqueous solutions and to accumulate considerable amounts of them. The mechanism of the accumulation depends on the physiological state of the cells. In the case of resting cells the binding reaction takes place on the surface of the cell wall as a sorption process. The kinetic of the sorption processes in dependence of the physiological state of the cells, the concentration of Hg2+ and Cd2+-ions on the solution and the pH and temperature has been investigated. Beyond that possibilities for the desorption of the metals from the biomass have been tested.  相似文献   

2.
Summary For many organisms, some heavy metals in external media are essential at low concentrations but are toxic at high concentrations. Strongly toxic heavy metals are toxic even at low concentrations. Recently, it was proven that changes of valencies of Fe, Cu and Mn were necessary for these metals to be utilized by organisms, especially microorganisms. The valencies of Hg and Cr are changed by reducing systems of cells in the process of detoxifying them. Thus, the processes of oxidoreduction of these metals are important for biological systems of metal-autoregulation and metal-mediated regulation. Metal ion-specific reducing enzyme systems function in the cell surface layer of microorganisms. These enzymes require NADH or NADPH as an electron donor and FMN or FAD as an electron carrier component. Electron transport may be operated by transplamsa-membrane redox systems. Metal ion reductases are also found in the cytoplasm. The affinities of metal ions to ligand residues change with the valence of the metal elements and mutual interactions of various metal ions are important for regulation of oxidoreduction states. Microorganisms can utilize essential metal elements and detoxify excess metals by respective reducing enzyme systems and by regulating movement of heavy metal ions.  相似文献   

3.
In recent years there have been a lot of works on the accumulation and removal of heavy metals from aqueous solutions and industrial waste waters by different kinds of microorganisms. A variety of microorganisms are known to be tolerant to mercury, copper, chromium, silver, cadmium etc., or to have a high accumulation capacity for these elements. But nothing is known about the interactions between microorganisms and REE*-ions in aqueous solutions. The objectives of our experiments were to determine the ability of various microorganisms to accumulate REE and to determine what possible effects, in terms of growth, different REE-ion concentrations may have on the bacteria cultures. Experiments on the accumulation of La and Pr by a freeze dried bacteria mixed culture, carried out with model solutions, showed that the accumulation process is completed few minutes after contact. The uptake is independent on pH-value and temperature and amounts up to 63 mg REE/g biomass in both cases. A gram+ bacterium spec., isolated from an industrial waste water, accumulates large quantities of REE in dependence on the pre-treatment of the cells, e.g. in the case of resting or freeze dried cells up to 100 mg/g biomass and in the case of heat treated cells up to 40 mg/l.  相似文献   

4.
Cellular regulation of iron assimilation   总被引:9,自引:0,他引:9  
Cells of plants, most microorganisms, and animals require well-defined amounts of iron for survival, replication, and differentiation. The metal is an important component of such processes as synthesis of DNA, RNA, and chlorophyll; electron transport; oxygen metabolism; and nitrogen fixation. Because of the insolubility of iron in aerobic environments at neutral and alkaline pH values, cells have had to devise specific strategies to assimilate the metal. These include (1) development of systems for reducing ferric ions to the more soluble ferrous ions at the cell surface, (2) employment of small carrier molecules (termed siderophores) that have high affinity for ferric ions and receptor proteins for the ferrated molecules, and (3) use of transferrin and other proteins that can transport ferric ions. Excessive amounts of iron are toxic, however, and intracellular storage capacity is limited and efflux mechanisms generally are lacking. Thus, cells have had to develop methods of preventing over-accumulation of the metal. These include use of (1) oxygen to convert ferrous to ferric ions, (2) small molecules that can bind ferrous ions, termed siderophraxes, and (3) proteins that, when combined with ferrous ions, repress the expression of iron transport genes. Often, one organism can prevent growth of neighbors by restricting their access to iron. In other cases, cells assist each other by sharing iron acquisition systems or by restricting influx of excess iron. Homeostatic control of other essential trace metals also is required for optimal cell function. Nevertheless, since iron thus far has received most attention, it serves as the model of mineral metabolism. Moreover, many of the observations made on control of iron metabolism suggest possible applications in prevention and management of plant and animal infections as well as of neoplastic diseases, arthropathy, and cardiomyopathy. This review will focus on (1) problems at the cellular level of iron acquisition, storage, and exclusion; and (2) the strategies devised by cells of plants, microorganisms, and animals to solve these problems.  相似文献   

5.
The use of surfactants as a method for solubilization and removal of heavy metal contamination from soil has been reported before. Biosurfactants produced by some microorganisms are able to modify the surface of various metals and aggregate on interphases favoring the metal separation process from contaminated environments. We evaluated the feasibility of enhancing the removal of metal ions from mineral waste/contaminated soils using alternate cycles of treatment with rhamnolipid biosurfactants and bioleaching with a mixed bacterial culture of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Bioleaching alone removed 50% Zn and 19% Fe. When rhamnolipids were used at low concentration (0.4 mg/mL), 11% Fe and 25% Zn were removed, while at 1 mg/mL 19% Fe and 52% Zn removal were achieved. When using a cyclic treatment combining bioleaching and biosurfactants, metal removal reached up to 36% for Fe and 63% to 70% for Zn.  相似文献   

6.
This study assesses the ability of mycelia of Rhizopus delemar (both free and immobilized on polyurethane foam) to remove heavy metals from single-ion solutions as well as from a mixture of them. All experiments were conducted using 0.5-5 mm solutions of CuSO4 x 5H2O, CoCl2-6H2O and FeSO4 7H2O. Mycelia immobilized on polyurethane foam cells showed some times increase in uptake compared with that of free cells. Metal ions accumulation from a mixed solution was decreased slightly for cobalt and iron and considerable for copper ions. Heavy metal uptake was examined in the immobilized column experiments and more than 92% heavy metal removal (mg heavy metals removed/mg heavy metals added) from a mixed solution was achieved during the 5 cycles. During these experiments, the dry weight of the immobilized cells was decreased by only 2%. These results showed that immobilized mycelia of Rhizopus delemar can be used repeatedly for removal of heavy metals from aqueous solutions.  相似文献   

7.
Geochemical cycling and industrial pollution have made toxic metal ions a pervasive environmental pressure throughout the world. Biofilm formation is a strategy that microorganisms might use to survive a toxic flux in these inorganic compounds. Evidence in the literature suggests that biofilm populations are protected from toxic metals by the combined action of chemical, physical and physiological phenomena that are, in some instances, linked to phenotypic variation among the constituent biofilm cells. Here, we propose a multifactorial model by which biofilm populations can withstand metal toxicity by a process of cellular diversification.  相似文献   

8.
The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved.  相似文献   

9.
Biosorption of precious metals   总被引:3,自引:0,他引:3  
Biosorption has emerged as a low-cost and often low-tech option for removal or recovery of base metals from aqueous wastes. The conditions under which precious metals such as gold, platinum and palladium are sorbed by biomass are often very different to those under which base metals are sorbed. This, coupled with the increasingly high demand for precious metals, drives the increase in research into efficient recovery of precious metal ions from all waste material, especially refining wastewaters. Common biosorbents for precious metal ions include various derivatives of chitosan, as well as other compounds with relatively high surface amine functional group content. This is generally due to the ability of the positively charged amine groups to attract anionic precious metal ions at low pH. Recent research regarding the biosorption of some precious metals is reviewed here, with emphasis on the effects of the biosorption environment and the biosorption mechanisms identified.  相似文献   

10.
Corrosion occurs due to chemical or electrochemical reactions between the environment and metal. It can cause dangerous and expensive damage to a wide range of industries. However, it is difficult to evaluate the economic impact of corrosion, particularly when microorganisms are involved in the corrosion mechanism. Microbes change the electrochemical reaction at the biofilm/metal interface and either inhibit or accelerate the process of metal corrosion. The high cost, toxicity, and sometimes ineffectiveness of present physical and chemical strategies to control corrosion have called for the use of microorganisms in inhibitory mechanisms, and this has generated great interest. Although the microbial inhibitory mechanism is environmentally friendly, the predictability of the results is not yet affirmed, as sometimes the same bacteria with an inhibitory property may also become aggressive. This review discusses different mechanisms by which microbes induce or inhibit corrosion in metals. Further, as the corrosive or inhibiting behaviors of microorganisms vary considerably depending on environmental factors, the roles of these factors are also emphasized.  相似文献   

11.
The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses.  相似文献   

12.
Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer) where the mineral dissolution reactions occur. Temperatures at which these processes are carried out can vary from ambient to 80°C and the types of organisms present depends to a large extent on the process temperature used. Irrespective of the operation temperature, biomining microbes have several characteristics in common. One shared characteristic is their ability to produce the ferric iron and sulfuric acid required to degrade the mineral and facilitate metal recovery. Other characteristics are their ability to grow autotrophically, their acid-tolerance and their inherent metal resistance or ability to acquire metal resistance. Although the microorganisms that drive the process have the above properties in common, biomining microbes usually occur in consortia in which cross-feeding may occur such that a combination of microbes including some with heterotrophic tendencies may contribute to the efficiency of the process. The remarkable adaptability of these organisms is assisted by several of the processes being continuous-flow systems that enable the continual selection of microorganisms that are more efficient at mineral degradation. Adaptability is also assisted by the processes being open and non-sterile thereby permitting new organisms to enter. This openness allows for the possibility of new genes that improve cell fitness to be selected from the horizontal gene pool. Characteristics that biomining microorganisms have in common and examples of their remarkable adaptability are described.  相似文献   

13.
Microorganisms immobilize, mobilize, or transform metals by extracellular precipitation reactions, intracellular accumulation, oxidation and reduction reactions, methylation and demethylation, and extracellular binding and complexation. Nearly all of these microbe/metal interactions occur within the wetlands approach to acid mine drainage treatment, a process that is rapidly gaining support as a low‐maintenance, cost‐effective approach to solving an important environmental problem. Several proprietary processes, which employ nonliving microorganisms that are immobilized in polymer matrixes, are entering the water treatment market. These processes take advantage of negatively charged functional groups on cell walls and exopolymers of microorganisms that bind cationic metals. These biosorbents effectively remove low concentrations (<1 to about 20 mg/L) of heavy metal cations in the presence of high concentrations of alkaline earth metals (Ca2+ and Mg2+) and organic contaminants to levels lower than the U.S. National Drinking Water Standards. Immobilization of the biomass in polymer matrixes yields products that have substantial chemical and mechanical integrity. These immobilized products lend themselves to application in conventionally engineered systems such as up‐flow and down‐flow columns, expanded‐bed systems, dispersed‐bed systems, and low‐maintenance trough systems. Biosorption will probably play an important role in achieving the strict environmental standards now being enforced.  相似文献   

14.
金属结合蛋白(肽)与环境重金属生物修复   总被引:8,自引:0,他引:8  
重金属污染是全球关注的重要环境问题。针对重金属的生物修复技术 ,因其特有的优势 ,越来越受到重视 ,其中一个重要的研究领域是利用金属离子和金属结合蛋白或结合肽之间存在的强亲和能力特性进行的生物修复研究。就金属结合蛋白 (肽 )的种类、结构特点、以及金属结合的作用机理进行了总结 ,同时综述了展示或表达有不同金属结合蛋白或结合肽的微生物和植物对重金属污染进行生物修复的最新研究进展 ,对基于金属结合蛋白 (肽 )的环境重金属生物修复的进一步研究 (如肽库的构建和筛选 ,金属与蛋白 (肽 )的相互作用 )进行了讨论。  相似文献   

15.
The value of the application of hydrostatic pressure as a variable in kinetics investigations designed to elucidate mechanisms of some inorganic and bioinorganic reactions is reviewed and appraised. This is accomplished by charting the development of this experimental approach that leads to the derivation of the volume of activation for an individual reaction, and in many cases to the establishment of a volume profile for an overall reaction. A selection of recent investigations in which volume profiles together with other information have been pivotal in understanding the relevant reaction mechanism is presented. Reactions highlighted are water exchange on both fully hydrated cations or on partially complexed aqua ions, transition metal complex formation, reactions of nitric oxide with a wide variety of iron complexes or iron-containing proteins, and potential oxidative catalysis employing hydrogen peroxide. Recent advances in theoretical calculations regarding solvent exchange on various ions, and particularly on lithium ions and beryllium ions are described.  相似文献   

16.
Preliminary results on the novel use of the bacterium Thiobacillus ferrooxidans (ATCCJ 3598 and ATCC33020) for the micro‐machining (or biomachinig) of metals are reported. Biomachning is a controlled microbiological process to selectively form microstrucutures on a metal work‐piece by metal removal (or dissolution) using microorganisms. Applying copper and mild steel as work‐pieces, it was shown that the mass removed increased proportionately with machining time. In another experiment, the work‐pieces were coated with organic photo‐resistive materials to mask (i.e. protect) certain regions of the metlas, thereby defining the microstructure to be formed. The unmasked regions were successfully biomachined; the final machined profile was shown to be similar to the coating image on the original metal. Although biomachining proceeded at a slower rate than chemical machining, the undesired leaching of the metal in the region under the masked area (termed undercutting) was not as severely encountered when compared with the latter. This work demonstrates the potential use of microorganisms for the biomachining of metals. As a “green process”, the innovative use of T. ferrooxidans for the micro‐machining of metals opens up the possibility of biomachining as an alternative to conventional metal processing.  相似文献   

17.
Selective accumulation of heavy metals by microorganisms   总被引:3,自引:0,他引:3  
Summary An investigation of the removal and recovery of urnnium from aqueous systems using microbial biomass has been described previously (Nakajima et al. 1982). To establish which microorganisms accumulate the most uranium, we extended our investigation of uranium uptake to 83 species of microorganisms, 32 bacteria, 15 yeasts, 16 fungi and 20 actinomycetes. Of these 83 species of microorganisms tested, extremely high uranium-absorbing ability was found in Pseudomonas stutzeri, Neurospora sitophila, Streptomyces albus and Streptomyces viridochromogenes.The selective accumulation of heavy metal ions by various microorganisms has also been examined. Uranyl, mercury and lead ions were readily accumulated by almost all the species of microorganisms tested. Actinomycetes and fungi differ from many bacteria and most yeasts in their selective accumulation of uranium and mercury.In addition to this fundamental research, uranium recovery was investigated in immobilized Streptomyces albus, a microorganism with high uranium-uptake ability. These immobilized cells adsorbed uranium readily and selectively. The immobilized cells recovered uranium almost quantitatively and almost all uranium absorbed was desorbed with 0.1 M Na2CO3. The dry weight of the free cells decreased by 50% during 5 adsorption-desorption cycles. However, the dry weight of the immobilized cells decreased by only 2% during 5 cycles. These results showed that microbial cells are more stable after immobilization and can be used repeatedly for the process of uranium adsorption-desorption.  相似文献   

18.
The ability of hydrogenases isolated from Thiocapsa roseopersicina and Lamprobacter modestohalophilus to reduce metal ions and oxidize metals has been studied. Hydrogenases from both phototrophic bacteria oxidized metallic Fe, Cd, Zn and Ni into their ionic forms with simultaneous evolution of molecular hydrogen. The metal oxidation rate decreased in the series Zn>Fe>Cd>Ni and depended on the pH. The presence of methyl viologen in the reaction system accelerated this process. T. roseopersicina and L. modestohalophilus cells and their hydrogenases reduced Ni(II), Pt(IV), Pd(II) or Ru(III) to their metallic forms under H2 atmosphere. These results suggest that metals or metal ions can serve as electron donors or acceptors for hydrogenases from phototrophic bacteria.  相似文献   

19.
Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.  相似文献   

20.
利用微生物治理重金属污染已经成为一个研究的热点,并被视为将最终替代传统的物理、化学等处理方式的一种方法.但由于一些微生物存在安全性、繁殖速度慢等问题而造成了处理效果不佳.因此,以安全性高、繁殖速度快的苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)为研究载体,寻找最适Bt的镍污染处理方法对于提高...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号