首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the insectDrosophila, formation of the puparium marks the onset of metamorphosis and serves as a useful marker for developmental progress. The cells of the adult remain diploid and divide during the larval stage while the larval cells become polytene and do not divide. We use a high dose of gamma-irradiation (10 krad) to selectively delete the imaginal lineage from the developing larvae ofDrosophila melanogaster. We find that animals depleted of imaginal cells including those of the imaginal brain pupariate only if the larval cells are allowed to mature, demonstrating that the larval cells harbor the primary developmental timer for this process. However, proliferating imaginal cells can exert a negative influence on the timing of pupariation.  相似文献   

2.
The latent effects of precocenes I and II (PI and PH) and juvenile hormone I (JHI) when topically applied to the last three instars of Spodoptera littoralis (Boisd.) larvae have been studied. Application of both PI or PII resulted in morphogenetic abnormalities resemble some effects induced by administration of JHI, e.g., larval‐pupal intermediate, partial or severe cases of untanned pupae and imperfect moths. In PII‐treatments, the effect was instar‐dose‐dependent. The intermediate dose (55 μg) was more effective on S. littoralis larvae than other doses. The effectiveness of both doses of 40 or 70 μg in production of deformed larvae and pupae decreased when applied as repeated doses instead of single ones. In Pi‐treatments, the lower dose (25 μg) was more harmful to Spodoptera larvae than the higher dose (70 μg). Repeated application by either lower or higher doses did not enhance the production of imperfect insects. Application of JHI induced symptoms ranging from supernumerary instars, larval‐pupal intermediate, untanned pupae and deformed adults. The effect was dose‐dependent. In all tested compounds, there apparently was a latent or delayed effects. Although the insects were treated while they were larvae the complete effects were not apparent until after the insect had become a pupa or an adult. More efforts will be needed to understand how does precocene interferes with the process of tanning or sclerotization?  相似文献   

3.
The phenotypic analysis of a new spontaneous recessive lethal mutation of Drosophila melanogaster is described. The lethal(2)thin mutation maps at 85.6 on chromosome 2 and produces a characteristic long, thin puparium due to an inability to shorten the larval form prior to pupariation. Histological examination of larval muscles and behavioural studies support the hypothesis that the mutation affects the striated structure of the larval muscles in late larval stages. Lethality largely occurs due to an inability to perform the movements necessary for pupation, although there is evidence for larval and possibly embryonic lethal phases.  相似文献   

4.
Summary Five new mutants were isolated on the X-chromosome which prevent or substantially delay puparium formation and subsequent metamorphosis without affecting larval development. The mutant phenotype probably involves stage-specific gene functions unimportant for the larval development but vital for puparium formation and for the beginning of metamorphosis. Two mutants gave larval-puparial gynanders (LPG) and could not be induced to pupariate by the implanted wild type ring gland. The block in these is possibly in some ecdysone-inducible autonomous functions of the larval hypoderm. The other 3 mutants did not form LPG while the implanted wild type ring gland induced pupariation. These mutants presumably have a low, subthreshold amount of ecdysone which is not able to induce pupariation.  相似文献   

5.
A central function of the Drosophila salivary glands (SGs), historically known for their polytene chromosomes, is to produce and then release during pupariation the secretory glue used to affix a newly formed puparium to a substrate. This essential event in the life history of Drosophila is regulated by the steroid hormone ecdysone in the late‐larval period. Ecdysone triggers a cascade of sequential gene activation that leads to glue secretion and initiates the developmentally‐regulated programmed cell death (PCD) of the larval salivary glands, which culminates 16 h after puparium formation (APF). We demonstrate here that, even after the larval salivary glands have completed what is perceived to be one of their major biological functions – glue secretion during pupariation – they remain dynamic and physiologically active up until the execution phase of PCD. We have used specific metabolic inhibitors and genetic tools, including mutations or transgenes for shi, Rab5, Rab11, vha55, vha68‐2, vha36‐1, syx1A, syx4, and Vps35 to characterize the dramatic series of cellular changes occurring in the SG cells between pupariation and 7–8 h APF. Early in the prepupal period, they are remarkably active in endocytosis, forming acidic vacuoles. Midway through the prepupal period, there is abundant late endosomal trafficking and vacuole growth, which is followed later by vacuole neutralization and disappearance via membrane consolidation. This work provides new insights into the function of Drosophila SGs during the early‐ to mid‐prepupal period.  相似文献   

6.
Changes in morphology during early metamorphosis of the medfly, Ceratitis capitata (Wied.) (Tephritidae) were correlated with biochemical differentiation events. Protein profiles were studied both in the 3rd instar larval cuticle further transformed into puparium and the newly synthesized pupal cuticle. Beta-alanine incorporation into the puparium (0–20 h) correlates with concomitant pigmentation (completed by 16 h) and sclerotization phenomena. This early tannification program seems to be followed by deposition of a layer of substances, probably ecdysial fluid remnants, into the puparium. Their deposition ends approximately at +46 h. Simultaneously, pupal cuticle material starts to be deposited. Synthesis and deposition of the main pupal cuticle protein was detected 48 h after pupariation. At that time, eversion of the pupal head occurs. The definitive profile of pupal cuticle proteins was attained at around +72 h together with the establishment of adult body proportions.  相似文献   

7.
The action of venom from the ectoparasitic wasp, Nasonia vitripennis, was monitored by examining alterations in patterned muscular movements characteristic of pupariation and eclosion behavior in the flesh fly, Sarcophaga bullata. Venom injected into larvae prior to pupariation caused a dose-dependent delay in pupariation. Eventually, such larvae did pupariate, but puparia were abnormally formed. Barographic records revealed that all elements of pupariation behavior were present in venom-injected larvae, but pupariation behavior was not well synchronized with tanning, thus implying that the venom caused disruption in the temporal organization of central motor programs. When larvae were ligated and injected with venom posterior to the ligature, no response was evident in the posterior region, suggesting that the venom does not directly stimulate muscles or neuromuscular junctions. Injection of exogenous ecdysteroid into venom-injected larvae restored some elements of pupariation behavior, consistent with ecdysone's role in stimulating the release of anterior retraction factor and puparium tanning factor, two factors that are released from the CNS to regulate pupariation. When the venom was injected into newly emerged imagoes, the duration of extrication behavior was shortened, whereas all phases of post-eclosion behavior were lengthened. These observations imply that the venom affects CNS centers that regulate the muscular systems engaged in extrication and post-eclosion behavior.  相似文献   

8.
This study shows that homozygotes for different alleles of the lethal mutant, l(2)gl, differing in the time of death also vary in the state of their endocrine system and the puffing patterns of their salivary gland chromosomes. Homozygotes which die at the larval stage have underdeveloped prothoracic glands and normal corpora allata (CA); in those dying at the prepupal stage both the prothoracic glands and the CA are equally underdeveloped. — All the early third instar larval puffs (96–110 h., PS 1–2) develop in homozygotes; however, the reduction of some early larval puffs, normally occurring before pupariation or at puparium formation, is delayed. Some puffs are more developed than normal. — The differences in puffing patterns chiefly concerned puffs which normally appear 4–5 h before puparium formation and at puparium formation. In homozygotes lethal as larvae some of the puffs normally active at this time did not develop. However, along with some of the late larval puffs, there appeared many puffs characteristic of prepupae. — In homozygotes lethal as prepupae only the time and sequence of puff appearance was altered. Many late larval puffs were active in prepupae rather than in larvae, whereas some of the puffs, normally appearing in prepupae, were active in the larval stage.Accordingly, we propose to distinguish two groups of puff loci. 1) Hormone dependent puffs: These do not develop in larval lethals and are active only after puparium formation in pupariated lethals. 2) Autonomous puffs: Their appearance depends more on the time of development, than on hormonal background. It is suggested that the induction of hormone dependent puffs and of puparium formation is possible at low ecdysone levels, provided that the juvenile hormone level is also low.  相似文献   

9.
ABSTRACT. Using a microfocal X-ray apparatus, a gas bubble was detected within the puparium of Glossina morsitans. The bubble appeared between 6 and 15 h after pupariation and was associated with one of the longitudinal tracheal trunks of the third instar larva. The bubble grew and achieved maximum size approximately 96 h after pupariation. It then disappeared at the time of eversion of the pupal appendages. There was a close correlation between bubble size and the weight of water lost since the time of pupariation. At the time of eversion of the pupal appendages the gas bubble apparently passed out through the longitudinal tracheal trunk and posterior spiracle to occupy the space between larval (puparial) and pupal cuticle. It is suggested that the bubble plays a vital role in the separation of these cuticular layers and that to this end water loss from the puparium is essential.  相似文献   

10.
The accumulation of cuticular hydrocarbon was measured throughout the life of Sarcophaga bullata. Less than 5 μg hydrocarbon per insect are present until the third larval instar when synthesis increases the quantity present to 10 to 20 μg by pupariation. The rate of synthesis increases at this time to 5 to 8 μg/day and continues until 40 to 45 μg are present per insect. This amount remains constant until several days before the pupal-adult ecdysis when synthesis again occurs. The rate of synthesis by these pharate adults is >20 μg/day. When the adult emerges it contains between 90 and 100 μg which increases slightly during the adult stadium. Two periods of rapid accumulation of cuticular hydrocarbon are observed: (1) during pupariation and the 3 day period following pupariation, and (2) during the 4 day period preceding the pupal-adult ecdysis. When pupariation is inhibited by contact with water, the rate of hydrocarbon biosynthesis also fails to increase.  相似文献   

11.
Nachman RJ  Strey A  Zubrzak P  Zdarek J 《Peptides》2006,27(3):527-533
Five native pyrokinin-like peptides (Neb-PK-1, Neb-PK-2, Neb-PVK-1, [L9]Neb-PVK-2, [I9]Neb-PVK-2) identified in the neuropeptidome of the flesh fly Neobellieria bullata were compared for their quantitative and/or qualitative effects on puparium formation (pupariation). In a standard pupariation bioassay, both Neb-PVK-1 and [I9]Neb-PVK-2 proved inactive, whereas [L9]Neb-PVK-2 demonstrated only weak activity. In contrast, both Neb-PK-1 and Neb-PK-2 demonstrated potent threshold doses, with Neb-PK-2 about 10-fold more active than Neb-PK-1. Analysis of neuromuscular activity during pupariation using a tensiometric technique demonstrates that the two native Neb-PKs accelerate the onset of immobilization and cuticular shrinkage more than motor programs associated with retraction of the anterior segments and longitudinal body contraction. It was further determined that the sensitivity of various components of the pupariation process to these peptides decreases in the following order: immobilization>cuticular shrinkage>motor program for anterior retraction>motor program for longitudinal contraction congruent to tanning of cuticle of the newly formed puparium. A paradoxical situation was observed whereby the motor programs of pupariation are temporally dissociated from actual morphogenesis of the puparium. The tensiometric data suggest that the most likely candidate for a primary pupariation factor is Neb-PK-2, rather than Neb-PK-1.  相似文献   

12.
Animals ubiquitously use chemical signals to communicate many aspects of their social life. These chemical signals often consist of environmental cues mixed with species-specific signals—pheromones—emitted by conspecifics. During their life, insects can use pheromones to aggregate, disperse, choose a mate, or find the most suitable food source on which to lay eggs. Before pupariation, larvae of several Drosophila species migrate to food sources depending on their composition and the presence of pheromones. Some pheromones derive from microbiota gut activity and these food-associated cues can enhance larval attraction or repulsion. To explore the mechanisms underlying the preference (attraction/repulsion) to these cues and clarify their effect, we manipulated factors potentially involved in larval response. In particular, we found that the (i) early exposure to conspecifics, (ii) genotype, and (iii) antibiotic treatment changed D. melanogaster larval behavior. Generally, larvae—tested either individually or in groups—strongly avoided food processed by other larvae. Compared to previous reports on larval attractive pheromones, our data suggest that such attractive effects are largely masked by food-associated compounds eliciting larval aversion. The antagonistic effect of attractive vs. aversive compounds could modulate larval choice of a pupariation site and impact the dispersion of individuals in nature.  相似文献   

13.

This study examined the inhibitory effect of 3 phenolic compounds and 12 strains of marine bacteria on the larval settlement of Balanus amphitrite amphitrite. The phenolic compounds used were phlorotannins, phloroglucinol and tannic acid. Phlorotannins are polymers of phloroglucinol (1,3,5‐trihydroxybenzene) known only from brown algae. Tannic acid, which exists in terrestrial plants, is composed of oligomers of phloroglucinol attached to a sugar molecule. The bacterial strains used were isolated from a natural biofilm. The following were investigated: 1) the toxicity of the phenolic compounds to B. a. amphirite in three different larval stages, viz. nauplius II, nauplius V and cyprid; 2) the potency of the compounds as inhibitors of larval settlement and the possible mechanism involved in settlement inhibition; and 3) the effects of the bacteria on larval settlement. The level of toxicity of the phenolic compounds varied widely for the larvae. Phlorotannins were most toxic, having LC50 values ranging from 9.47 to 40.35 μg ml‐1; phloroglucinol was least toxic, having LC50 values of 235.12 to 368.28 μg ml‐1. In general, nauplii were more sensitive to the toxicity of the phenolic compounds than cyprids. The greater sensitivity of nauplii may be due to their active feeding behavior, which exposes the interior of their bodies to the compounds by active intake. Phloroglucinol was the most potent settlement inhibitor, having an EC50 value of 0.02 μg ml‐1. Phlorotannins and tannic acid had EC50 values of 1.90 μg ml‐1 and 14.05 μg ml‐1, respectively. Phloroglucinol appeared to inhibit larval settlement through a relatively non‐toxic mechanism as its LC50 value was four orders of magnitude higher than its EC50 value. The high potency of phloroglucinol indicates that a simple constituent of a complex natural compound can be more effective than the natural compound itself. Larval settlement bioassays with monospecies bacterial films indicated that some of the bacterial species were inhibitory to larval settlement while the others showed no effect. None of the bacterial strains in this study induced larval settlement.  相似文献   

14.
The morphogenetic effect on metamorphosis of the three juvenile hormones is studied under experimental conditions that permit accurate conclusions in Locusta migratoria. Injections are made at the beginning on the last larval instar, which is the best time for action at the optimum level on the control of metamorphosis. Racemic hormones in stereochemical form comparable to that of natural compounds were used. Doses were chosen between 5 and 50 μg in order to give clear morphogenetic effects and give effects at a physiological level.A chronological study showed that juvenile hormones have the most important morphogenetic effect when injected in the first 40 hr of the last larval instar. Oiled solutions, stored at 4°C, lost only a small part of their morphogenetic activity after 9 months.Among the three hormones, JH-III presented the weaker morphogenetic effect, very significantly different from that of JH-I and JH-II. It has been possible to dissociate the effects of JH-I and JH-II on metamorphosis, JH-I giving a more potent action.  相似文献   

15.
The activity in whole insects for converting 3H-α-ecdysone to 3H-β-ecdysone after injection is low (half-maximal) in young last instar larvae, maximal in mature larvae, and minimal (fourth-maximal) at the white puparial stage. Because moulting hormone titre is low throughout the last larval instar and increases at the formation of the puparium it appears that hydroxylation at C-20 is not a key step in regulating β-ecdysone biosynthesis during larval development.The activity for catabolizing 3H-β-ecdysone is maximal in second instar larvae, about thirdmaximal throughout most of the third instar, and minimal at pupariation (thirtieth-maximal). Thus inactivation may play a rôle in regulating moulting hormone titre during larval development.  相似文献   

16.
An insect neuropeptide leucopyrokinin (LPK) (pQTSFTPRLamide) accelerates pupariation in wandering larvae of the fleshfly Sarcophaga bullata. The period of sensitivity to the action of LPK begins approximately 4 h before pupariation. Within this period the degree of acceleration of contraction into the shape of a puparium is practically independent of the age at which the larvae are injected, while acceleration of tanning is distinctly more age dependent. From ligation experiments we conclude that intact central innervation is essential for the action of LPK on puparial contraction, whereas central neurones take no part in mediation of LPK action on tanning of the cuticle. An analysis of tensiometric recordings of muscular activity revealed that the actual time of LPK accelerated puparial contraction coincides with the beginning of the immobilisation/retraction phase. LPK accelerates the switch from wandering behaviour to immobilisation/retraction behaviour but has no effect on the onset and duration of motor patterns that normally underlie puparial contraction in controls. The morphology of an accelerated puparium is normal but its formation is temporally dissociated from normal ‘contraction patterns’ that are performed a long time after the puparium has contracted. It means that neuromuscular activity of larvae accelerated by LPK does not cease upon formation of the white puparium, but continues until the whole motor programme of pupariation behaviour is completed. Apparently the peptide acts on the integument by stimulating it to contract and shrink, and no specific patterns of muscular contractions are needed to properly shape the puparium. This finding sheds a new light on our understanding of the mechanism of puparium formation.  相似文献   

17.
Timing of puparium formation in Drosophila melanogaster is set by reaching a critical stage at which larvae attain the ability to pupariate. This critical stage is reached at a relatively constant size characterized by the mean critical weight, i.e. the weight at which 50% of surviving larvae pupate without further feeding. The mean critical weight might be affected by larval growth conditions. This hypothesis was tested by determining the mean critical weight in larvae raised at three temperatures and two food levels, for two isofemale lines from two populations. Pupariation probability is a function of larval weight. The two environmental variables affect pupariation probability and mean critical weight differently. Food level does not affect critical weight but affects weight-independent mortality; higher temperatures lead to a reduction of mean critical weight. Mean critical weight shows substantial differences between lines; the differences are maintained over temperatures. Genetic variation in mean critical weights has ecological and evolutionary implications.  相似文献   

18.
An effective constant dose (55 μg) of precocene II (PII) was topically tested against the last three instars of Spodoptera littoralis (Boisd.) larvae. Application of PII induced morphogenetic abnormalities typical of juvenile hormone (JH) excess. The resultant imperfect insects included larval‐pupal mosaic and partial or severe cases of untanned pupae. The sixth‐instar larvae were more sensitive to PII administration than the two preceding instars. However, sensitivity of the last larval instar to PII varied with the timing of dose application relative to the developmental status of the larvae. Whereas the newly ecdysed (0‐day old) larvae were more sensitive, the older larvae of the same sixth‐instar showed sharp decrease in their sensitivity to PII with a concomitant increase of their age. Application of a single dose (5 μg) of JH I to PII pre‐treated larvae significantly (P < 0.001) reduced the production of imperfect insects where many PH‐treated larvae developed successfully to apparent normal pupae. Although a single dose of PII was more effective on S. littoralis larvae than repeated daily doses, the effectiveness of JHI‐therapy to PH pre‐treated larvae by repeated doses was less effective in producing perfect insects than JH‐therapy to PII pre‐treated larvae by single doses. The reversal of any of these by applied JHI is quite interesting but the mechanisms remain to be unraveled.  相似文献   

19.
Summary A method of isolating temperature-sensitive (ts) mutations blocking clone development, based on the analysis of twin spots produced by X-ray induced somatic recombination is reported. From this screen 10 ts mutations were recovered which caused an absence of the lethal-bearing clone at the restrictive temperature. Eight of these mutations were analyzed. Seven proved to be autonomous ts cell lethals and one was an autonomous ts mutation which reversibly affected cell division and growth of imaginal disc cells and growth of larval cells. The effects on development of one of the cell lethal mutations,l(1)ts-504, are described. Heat pulses (29°C) 24–72 hrs long caused a high frequency (up to 90%) of morphologically abnormal animals. The abnormalities observed were of two major kinds: deficiencies and duplications of imaginal disc derivatives. In addition, alterations of tarsal segmentations occurred. Heat pulses to larvae also delayed pupariation and eclosion by as much as four days. In general, longer pulses led to a greater delay in pupariation and eclosion and a higher frequency of deficiencies and duplications than shorter pulses. Exposure to restrictive temperature early in larval development delayed pupariation and resulted in mostly normal animals; exposure during the second and early third larval instar also delayed pupariation and led to a high frequency of duplications; exposure later in larval life, i.e. mid and late third larval instar, caused no delay in pupariation but led to a high frequency of deficiencies. These results can be explained by the occurrence of areas of cell death, which can be seen in the imaginal discs of larvae exposed to restrictive temperature by staining with trypan blue. This conclusion is further supported by the observation in gynandromorphs of duplications of female nonmutant tissue. These results are discussed in relation to current theories of pattern formation.  相似文献   

20.
Phthalic acid diamide insecticides are the most effective insecticides used against most of the lepidopteran pests including Helicoverpa armigera, a polyphagous pest posing threat to several crops worldwide. The present studies were undertaken to understand different target sites and their interaction with insect ryanodine receptors (RyR). Bioassays indicated that flubendiamide inhibited the larval growth in dose‐dependent manner with LD50 value of 0.72 μM, and at 0.8 μM larval growth decreased by about 88%. Flubendiamide accelerated the Ca2+‐ATPase activity in dose‐dependent trend, and at 0.8 μM, the activity was increased by 77.47%. Flubendiamide impedes mitochondrial function by interfering with complex I and F0F1‐ATPase activity, and at 0.8 μM the inhibition was found to be about 92% and 50%, respectively. In vitro incubation of larval mitochondria with flubendiamide induced the efflux of cytochrome c, indicating the mitochondrial toxicity of the insecticide. Flubendiamide inhibited lactate dehydrogenase and the accumulation of H2O2, thereby preventing the cells from lipid peroxidation compared to control larvae. At 0.8 μM the LDH, H2O2 content and lipid peroxidation was inhibited by 98.44, 70.81, and 70.81%, respectively. Cytochrome P450, general esterases, AChE, and antioxidant enzymes (catalase and superoxide dismutase) exhibited a dose‐dependent increasing trend, whereas alkaline phosphatase and the midgut proteases, except amino peptidase, exhibited dose‐dependent inhibition in insecticide‐fed larvae. The results suggest that flubendiamide induced the harmful effects on the growth and development of H. armigera larvae by inducing mitochondrial dysfunction and inhibition of midgut proteases, along with its interaction with RyR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号