首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between plants and soil microbes are important for plant growth and resistance. Through plant–soil-feedbacks, growth of a plant is influenced by the previous plant that was growing in the same soil. We performed a plant–soil feedback study with 37 grass, forb and legume species, to condition the soil and then tested the effects of plant-induced changes in soil microbiomes on the growth of the commercially important cut-flower Chrysanthemum in presence and absence of a pathogen. We analysed the fungal and bacterial communities in these soils using next-generation sequencing and examined their relationship with plant growth in inoculated soils with or without the root pathogen, Pythium ultimum. We show that a large part of the soil microbiome is plant species-specific while a smaller part is conserved at the plant family level. We further identified clusters of plant species creating plant growth promoting microbiomes that suppress concomitantly plant pathogens. Especially soil inocula with higher relative abundances of arbuscular mycorrhizal fungi caused positive effects on the Chrysanthemum growth when exposed to the pathogen. We conclude that plants differ greatly in how they influence the soil microbiome and that plant growth and protection against pathogens is associated with a complex soil microbial community.  相似文献   

2.
It has been argued that insect diversity in the Cape is disproportionately low, considering the unusually high plant diversity in this region. Recent studies have shown that this is not the case, but the precise mechanisms linking plant diversity and insect diversity in the Cape are still poorly understood. Here we use a dated genus-level phylogenetic tree of the Cape plants to assess how plant phylogenetic diversity compares with taxonomic diversity at various levels in predicting insect diversity. We find that plant phylogenetic diversity (PD) is a better predictor of insect species diversity that plant species diversity, but the number of plant genera is overall as good a predictor as PD, and much easier to calculate. The relationship is strongest between biomes, suggesting that the relationship between plant diversity and insect diversity is to a large extent indirect, both variables being driven by the same abiotic factors and possibly by common diversification, immigration and extinction histories. However, a direct relationship between plant diversity and insect diversity can be detected at fine scales, at least within certain biomes. Diversity accumulation curves also indicate that the way plant phylogenetic diversity and the number of plant genera increase over spatial scales is most similar to that for insect species; plant species show a greater increase at large spatial scales due to high numbers of local endemics.  相似文献   

3.
Currently, the major thrust of plant physiology research is to identify and understand the regulation of genes that might be relevant in plant development and growth. The dominance of a genocentric view of plant behaviour has, unfortunately, resulted in the development of major disconnects in the classical view of plant physiology as a partnership between fundamental and practical research contributing to improved plant production. One disconnect is that much of the genocentric research appears to be organized and executed without regard to the practical needs of enhancing plant performance under applied conditions. Although practical benefits from genocentric research are often claimed, basic assumptions guiding much research and the experimental protocols used are commonly not relevant for real-world plant production. A second disconnect is a failure fully to appreciate the lessons learned in 40 years of classical plant physiology research concerning the role of physiological processes in altering whole plant performance. Regulation of plant systems has proved to be complex and redundant. Alteration of a single physiological process is compensated or dampened so that commonly very little change in plant growth and yield results from modification of a single physiological process. Based on a few successful projects employing classical plant physiology to achieve crop yield increase, key characteristics for research projects that truly seek to increase plant performance in production systems are identified. Basically, the partnership between the fundamental and practical research long espoused for plant physiology needs to be re-established in an intimate and meaningful way.  相似文献   

4.
Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta‐analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta‐analysis suggest that natural control in plant‐diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small‐scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.  相似文献   

5.
植物生根的分子机理研究进展   总被引:3,自引:0,他引:3  
随着无性系育种在农林业上的广泛应用,其生根难的问题显得尤为突出。通过查阅相关文献,本文探讨了影响植物根发育的分子机理。从植物激素,主要从生长素调控植物根发育的分子机理;细胞周期相关基因影响植物根发育和与细胞壁形成相关的基因影响植物根发育等方面叙述了目前关于植物根发育的研究进展。并提出了解决研究生根分子机理材料难选择问题的方法。  相似文献   

6.
Ecological theory predicts a positive and asymptotic relationship between plant diversity and ecosystem productivity based on the ability of more diverse plant communities to use limiting resources more fully. This is supported by recent empirical evidence. Additionally, in natural ecosystems, plant productivity is often a function of the presence and composition of mycorrhizal associations. Yet, the effect of mycorrhizal fungi on the relationship between plant diversity and productivity has not been investigated. We predict that in the presence of AMF, productivity will saturate at lower levels of species richness because AMF increase the ability of plant species to utilize nutrient resources. In this study we manipulated old-field plant species richness in the presence and absence of two species of AMF. We found that in the absence of AMF, the relationship between plant species richness and productivity is positive and linear. However, in the presence of AMF, the relationship is positive but asymptotic, even though the maximum plant biomass was significantly different between the two AMF treatments. This is consistent with the hypothesis that AMF increase the redundancy of plant species in the productivity of plant communities, and indicates that these symbionts must be considered in future investigations of plant biodiversity and ecosystem function.  相似文献   

7.
8.
Aims UV-B radiation is known to affect plant physiology and growth rate in ways that can influence community species composition and structure. Nevertheless, comparatively little is known about how UV-B radiation induced changes in the performance of individual species cascades to affect overall community properties. Because foliage leaves are primarily responsible for photosynthesis and carbon gain and are the major organ that senses and responds to UV-B radiation, we hypothesized that, under reduced UV-B radiation, species with larger leaf areas per plant would manifest higher growth rates and hence tend to improve their community status compared to species with smaller leaf areas per plant in herbaceous plant communities.Methods We tested this hypothesis by examining plant traits (leaf area per plant and plant height), plant growth rate (aboveground biomass per plant and plant biomass per area) and community status (species within-community relative biomass) for 19 common species in a two-year field experiment in an alpine meadow on Tibetan Plateau.Important findings Aboveground biomass per plant, as well as per area, progressively increased in a 39% reduced (relative to ambient) UV-B treatment during the experimental period. At the second year, 11 out of 19 species significantly or marginally significantly increased their plant height, leaf area per plant and aboveground biomass per plant. No species was negatively affected by reducing UV-B. As hypothesized, the increase in aboveground biomass per plant increased with increasing leaf area per plant, as indicated by cross-species regression analysis. Moreover, the change in species within-community status increased with increasing leaf area per plant. Our study demonstrates that UV-B radiation has differential effects on plant growth rate across species and hence significantly affects species composition and plant community structure. We suggest that UV-B radiation is an ecological factor structuring plant communities particularly in alpine and polar areas.  相似文献   

9.
Experiments were conducted to test the hypothesis that plant learning by a relative plant-specialist parasitoid wasp should influence the probability of orienting to plant odors (plant finding) and the duration of searching on a plant after landing (plant examining). The insect tested was Diaeretiella rapaeM'Intosh (Hymenoptera: Aphidiidae), a parasitoid wasp that usually attacks aphids on cruciferous plants, but occasionally on other plants. Laboratory experiments using collard as the cruciferous plant and potato as the novel plant demonstrated that postemergence (adult) plant experience affected plant examining only on the less preferred plant, potato, and was reversible and relatively long-term (that is, lasted >2 days). Postemergence experience with potato did not increase orientation to potato odor in a wind tunnel, but postemergence experience with collard resulted in a trend of increased likelihood of flying to collard odor. Preemergence treatments affected plant finding but not plant examining.  相似文献   

10.
Although several hypotheses aim to explain insect herbivory on plants, the relative importance of plant traits, environment, and organizational scale (i.e., individual or community) to herbivory damage level is not well understood. We used an approach based on a local scale, divided into individual and community levels, to test if plant traits, soil characteristics, and plant density explain leaf damage. We sampled 983 individuals in 49 plots distributed over dense and open savanna formations in Emas National Park. In order to explain plant damage, we performed a multi-model inference analysis of four plant traits associated with plant damage, five soil characteristics, and plant density. We did not find any support to plant vigor or plant stress hypotheses at individual plant level. However, the resource concentration hypothesis and plant stress hypothesis explained leaf damage at the community level. We found that increased availability of calcium (Ca) in soils reduced plant damage at the community level. Because soil Ca concentration is a major constraint to plant development in the Brazilian savanna, we postulated that its increasing availability permits plants to invest more in defense strategies. We demonstrate that plant density, Ca soil concentration, and leaf size can be used to predict the plant damage suffered by woody species in savannas at community level.  相似文献   

11.
What are the limitations of models that predict the behavior of an ecological community based on a single type of species interaction? Using plant–pollinator network models as an example, we contrast the predicted vulnerability of a community to secondary extinctions under the assumption of purely mutualistic interactions versus mutualistic and competitive interactions. We find that competition among plant species increases the risk of secondary extinctions and extinction cascades. Simulations over a number of different network structures indicate that this effect is stronger in larger networks, more strongly connected networks and networks with higher plant:pollinator ratios. We conclude that efforts to model plant–pollinator communities will systematically over‐estimate community robustness to species loss if plant competition is ignored. However, because the effect of plant competition depends on network architecture, and because characterization of plant competition is work intensive, we suggest that efforts to account for plant competition in plant–pollinator network models should be focused on large, strongly connected networks with high plant:pollinator ratios.  相似文献   

12.
Species comparisons are a cornerstone of biology and there is a long tradition of using the comparative framework to study the ecology and evolution of plant defensive traits. Early comparative studies led to the hypothesis that plant chemistry plays a central role in plant defence, and the evolution of plant secondary chemistry in response to insect herbivory remains a classic example of coevolution. However, recent comparative work has disagreed with this paradigm, reporting little connection between plant secondary chemicals and herbivory across distantly related plant taxa. One conclusion of this new work is that the importance of secondary chemistry in plant defence may have been generally overstated in earlier research. Here, we attempt to reconcile these contradicting viewpoints on the role of plant chemistry in defence by critically evaluating the use and interpretation of species correlations as a means to study defence–herbivory relationships. We conclude that the notion that plant primary metabolites (e.g. leaf nitrogen content) are the principal determinants of herbivory (or the target of natural selection by herbivores) is not likely to be correct. Despite the inference of recent community‐wide studies of herbivory, strong evidence remains for a prime role of secondary compounds in plant defence against herbivores.  相似文献   

13.
Invasive species have profound negative impacts on native ranges. Unraveling the mechanisms employed by invasive plant species is crucial to controlling invasions. One important approach that invasive plants use to outcompete native plants is to disrupt mutualistic interactions between native roots and mycorrhizal fungi. However, it remains unclear how differences in the competitive ability of invasive plants affect native plant associations with mycorrhizae. Here, we examined how a native plant, Xanthium strumarium, responds to invasive plants that differed in competitive abilities (i.e., as represented by aboveground plant biomass) by measuring changes in root nitrogen concentration (root nutrient acquisition) and mycorrhizal colonization rate. We found that both root nitrogen concentration and mycorrhizal colonization rate in the native plant were reduced by invasive plants. The change in mycorrhizal colonization rate of the native plant was negatively correlated with both aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant in monocultures relative to mixed plantings. In contrast, the change in root nitrogen concentration of the native plant was positively correlated with aboveground plant biomass of the invasive plants and the change in aboveground plant biomass of the native plant. When we compared the changes in mycorrhizal colonization rate and root nitrogen concentration in the native plant grown in monocultures with those of native plants grown with invasive plants, we observed a significant tradeoff. Our study shows that invasive plants can suppress native plants by reducing root nutrient acquisition rather than by disrupting symbiotic mycorrhizal associations, a novel finding likely attributable to a low dependence of the native plant on mycorrhizal fungi.  相似文献   

14.
Escudero J  Hohn B 《The Plant cell》1997,9(12):2135-2142
  相似文献   

15.
As a scientific discipline, plant morphology is 211 yr old, originated by Goethe in 1790. It is a discipline that has largely been Germanic in practice. Because it took its origins from the study of the natural history of plants and the United States is principally an engineering society, the discipline of plant morphology in its pure form has never been widely practiced in this country. What has been labeled "plant morphology" in the United States has served largely as a handmaiden for systematics, using morphological characteristics to carve up diversity into its systematic subunits. Because the heart of plant morphology as a science is a focus on the convergences rather than the homologies in a phylogenetic sense, the German tradition of plant morphology is a unifying science that focuses on fundamental themes that transcend systematic boundaries. This paper traces the history of the science of plant morphology through the lineage of its principal practitioners: Goethe, Hofmeister, von Goebel, and Troll. It also evaluates the principles of plant morphology by applying them to the phyletically diverse Pteridophytes, showing that contemporary members of that group exhibit levels of shoot organization comparable to that of seed plants and discusses the implications of these findings.  相似文献   

16.
To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.  相似文献   

17.
We analyzed the consequences of climate change and the increase in soil erosion, as well as their interaction on plant and soil properties in semiarid Mediterranean shrublands in Eastern Spain. Current models on drivers of biodiversity change predict an additive or synergistic interaction between drivers that will increase the negative effects of each one. We used a climatic gradient that reproduces the predicted climate changes in temperature and precipitation for the next 40 years of the wettest and coldest end of the gradient; we also compared flat areas with 20° steep hillslopes. We found that plant species richness and plant cover are negatively affected by climate change and soil erosion, which in turn negatively affects soil resistance to erosion, nutrient content and water holding capacity. We also found that plant species diversity correlates weakly with plant cover but strongly with soil properties related to fertility, water holding capacity and resistance to erosion. Conversely, these soil properties correlate weaker with plant species cover. The joint effect of climate change and soil erosion on plant species richness and soil characteristics is antagonistic. That is, the absolute magnitude of change is smaller than the sum of both effects. However, there is no interaction between climate change and soil erosion on plant cover and their effects fit the additive model. The differences in the interaction model between plant cover and species richness supports the view that several soil properties are more linked to the effect that particular plant species have on soil processes than to the quantity and quality of the plant cover and biomass they support. Our findings suggest that plant species richness is a better indicator than plant cover of ecosystems services related with soil development and protection to erosion in semiarid Mediterranean climates.  相似文献   

18.
19.
Jasmonates are a new class of plant hormones that play important roles in plant development and plant defense. The COI1 gene was previously shown to be required for jasmonate-regulated plant fertility and defense. We demonstrated for the first time that COI1 interacts with the Arabidopsis SKP1-LIKE1 (ASK1) to form a complex that is required for jasmonate action in planta. Functional analysis by antisense strategy showed that ASK1 is involved in male fertility.  相似文献   

20.
Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an important first step toward developing a general understanding of the interplay between mutualism and competition in patchy landscapes, and generate qualitative predictions that may be tested in future empirical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号