首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The objective of this study was to examine preimplantation development and sperm aster characteristics of bovine male and female embryos produced by using spermatozoa sorted for the X or Y chromosome. In vitro matured oocytes were inseminated at 24 h of maturation with sorted X or Y chromosome-bearing spermatozoa, using either fresh or frozen-thawed semen. Samples were taken from each sperm group 12 h post insemination (hpi), fixed, and immunostained for the microtubule cytoskeleton. Confocal microscopy enabled visualization of sperm aster formation and microtubule characteristics of each zygote during early fertilization. Cultured embryos were checked for cleavage at 30, 35, 40 and 45 hpi, embryo development was examined daily until Day 8 of culture. Blastocyst cell numbers were determined at the end of the experiments. Reanalysis of the sorted sperm cells for DNA content showed purity rates of 90.1 and 92.1% for X and Y chromosome-bearing spermatozoa, respectively. Reduced fertilization and development rates were observed when sorted spermatozoa were used compared with fresh and frozen-thawed spermatozoa. Penetration rates at 12 hpi were 39.5, 44.7, 55.9 and 79.0%, while blastocyst formation rates at Day 8 were 26.7, 26.5, 31.7 and 40.7% for X and Y chromosome-bearing spermatozoa, using fresh and frozen-thawed semen groups, respectively. Sperm aster size was larger in males than females, while the size of pronuclei and subjective grade of sperm aster quality showed no differences between sexes. In this study, a greater cleavage rate and sperm aster size in male embryos indicated a dimorphic pattern of development in male and female embryos during fertilization and first cleavage.  相似文献   

2.
Flow cytometric sperm sorting based on X and Y sperm DNA difference has been established as the only effective method for sexing the spermatozoa of mammals. The standard method for verifying the purity of sorted X and Y spermatozoa has been to reanalyze sorted sperm aliquots. We verified the purity of flow-sorted porcine X and Y spermatozoa and accuracy of DNA reanalysis by fluorescence in situ hybridization (FISH) using chromosome Y and 1 DNA probe. Eight ejaculates from 4 boars were sorted according to the Beltsville Sperm Sexing method. Porcine chromosome Y- and chromosome 1-specific DNA probes were used on sorted sperm populations in combination with FISH. Aliquots of the sorted sperm samples were reanalyzed for DNA content by flow cytometry. The purity of the sorted X-bearing spermatozoa was 87.4% for FISH and 87.0% for flow cytometric reanalysis; purity for the sorted Y-bearing spermatozoa was 85.9% for FISH and 84.8% for flow cytometric reanalysis. A total of 4,424 X sperm cells and 4,256 Y sperm cells was examined by FISH across the 8 ejaculates. For flow cytometry, 5,000 sorted X spermatozoa and 5,000 Y spermatozoa were reanalyzed for DNA content for each ejaculate. These results confirm the high purity of flow sorted porcine X and Y sperm cells and the validity of reanalysis of DNA in determining the proportions of X- and Y-sorted spermatozoa from viewing thousands of individual sperm chromosomes directly using FISH.  相似文献   

3.
Flow cytometric techniques were used to measure relative DNA content of X and Y chromosome-bearing bull, boar, and ram sperm populations and to separate the two sex-determining populations. Neat semen was prepared for flow cytometric analysis by washing, light sonication, and staining with 9 μM Hoechst 33342. Computer analysis of the bimodal histograms showed mean X-Y DNA differences of 3.9, 3.7, and 4.2% for bull, boar, and ram, respectively. Flow cytometric reanalysis of sorted bull, boar, and ram sperm showed purities greater than 90%. Bull, boar, and ram sperm nuclei were microinjected into hamster oocytes. Microinjected sperm were either unsorted, sorted, unsorted plus dithio-threitol (DTT) exposure, or sorted plus DTT exposure. Following microinjection, eggs were incubated 3 hr, fixed, and stained. A total of 579 eggs was observed for sperm activation (decondensation or formation of a male pronucleus). A lower percentage of sorted than unsorted (3 vs. 23%) boar sperm was activated (P <.05). However, sorted and unsorted DTT-exposed boar sperm or sorted and unsorted bull or ram sperm, regardless of DTT treatment, did not differ significantly. Sorted sperm nuclei of both rams and bulls exhibited higher activation rates than sorted boar sperm (P <.05). Treatment of sperm with DTT increased the activation rate (P < .05) for sorted boar sperm but not for bull or ram sperm. These data represent the first separation of bull, boar, and ram X and Y chromosome-bearing sperm populations and the first evidence that sperm of domestic animals sorted on the basis of DNA by flow cytometric procedures have the ability to decondense and to form pronuclei upon injection into a hamster egg.  相似文献   

4.
In vivo-matured porcine oocytes were fertilized in vitro with X and Y chromosome-bearing spermatozoa, and sorted for sex on the basis of DNA content by flow cytometry. Developmental competence of the sexed embryos was determined through established pregnancies after embryo transfer. Spermatozoa were stained with Hoechst 33342 and sorted using a flow cytometry cell sorter. Purity of sorting was 83% for Y spermatozoa and 92% for X spermatozoa. A total of 387 mature cumulus-oocyte-complexes (COC) was collected from 18 superovulated prepuberal gilts shortly before ovulation. In vitro fertilization with sorted spermatozoa was performed in 4 replicates. After 18 h of sperm- oocyte co-culture at 39 degrees C, the zygotes were placed into culture medium (NCSU-23) for another 24 h. The average cleavage rate was 56.2%. Ninety-two embryos produced from X-sorted sperm cells were transferred surgically into the uterus of 2 recipients. Two gilts farrowed and delivered 6 and 4 healthy female piglets, respectively. Additionally, 2 gilts were inseminated intratubally via surgical laparotomy with either X or Y sorted spermatozoa (2 x 10(5)) per oviduct. The 2 sows farrowed producing 15 piglets. Thirteen of the 15 piglets were of the predicted gender (85%).  相似文献   

5.
Flow cytometric sorting of non-human primate sperm nuclei   总被引:7,自引:0,他引:7  
Pre-determination of the sex of offspring has implications for management and conservation of captive wildlife species, particularly those with single sex-dominated social structures. Our goal is to adapt flow cytometry technology to sort spermatozoa of non-human primate species for use with assisted reproductive technologies. The objectives of this study were to: (i) determine the difference in DNA content between X- and Y-bearing spermatozoa (ii) sort sperm nuclei into X- and Y-enriched samples; and (iii) assess the accuracy of sorting. Spermatozoa were collected from two common marmosets (Callithrix jacchus), seven hamadryas baboons (Papio hamadryas) and two common chimpanzees (Pan troglodytes). Human spermatozoa from one male were used as a control. Sperm nuclei were stained (Hoechst 33342), incubated and analyzed using a high-speed cell sorter. Flow cytometric reanalysis of sorted samples (sort reanalysis, 10,000 events/sample) and fluorescence in situ hybridization (FISH; 500 sperm nuclei/sample) were used to evaluate accuracy of sorting. Based on fluorescence intensity of X- and Y-bearing sperm nuclei, the difference in DNA content between X and Y populations was 4.09 +/- 0.03, 4.20 +/- 0.03, 3.30 +/- 0.01, and 2.97 +/- 0.05%, for marmoset, baboon, chimpanzee and human, respectively. Sort reanalysis and FISH results were similar; combined data revealed high levels of purity for X- and Y-enriched samples (94 +/- 0.9 and 93 +/- 0.8%, 94 +/- 0.7 and 94 +/- 0.5%, 91 +/- 0.9 and 97 +/- 0.6%, 94 +/- 0.6 and 94 +/- 0.9%, for marmoset, baboon, chimpanzee and human, respectively). These data indicate the potential for high-purity sorting of spermatozoa from non-human primates.  相似文献   

6.
The only known and measurable difference between X- and Y-chromosome bearing spermatozoa is the small difference in their DNA content. The X sperm in the human carry 2.8% more DNA than the Y sperm, while in domestic livestock this difference ranges from 3.0 to 4.2%. The only successful sperm separation method, flow cytometric sorting, is based on this difference in DNA content. Using this technique, X and Y sperm populations with purities greater than 90% can be obtained. The number of spermatozoa that can be sorted in a given time period, however, is too low for application of this technique in routine artificial insemination. Therefore, the search for a marker other than DNA to differentiate between X and Y sperm remains of interest in order to develop a method for large scale X and Y sperm separation. The aim of the present study was to investigate whether porcine X and Y sperm contain some difference in their plasma membrane proteins. The flow cytometric sorting of sperm enabled a direct comparison of the proteins of the X and Y sperm populations High resolution two-dimensional (2-D) electrophoresis was used; however, adaptations were needed to enable its use for analysis of proteins of flow cytometrically sorted sperm, both in the sorting procedure, membrane protein solubilization, and in the 2-D electrophoresis. Up to 1,000 protein spots per gel could be detected and quantified. Comparison of the 2-D protein patterns revealed differences in protein spots between sperm of two individual boars. However, no differences in protein spots between the X and Y sperm fractions were found. These results provide additional support for the view that X- and Y-chromosome bearing spermatozoa are phenotypically identical, and cast doubt on the likelihood that a surface marker can provide a base for X and Y sperm separation. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Intact, viable X and Y chromosome-bearing sperm populations of the rabbit were separated according to DNA content with a flow cytometer/cell sorter. Reanalysis for DNA of an aliquot from each sorted population showed purities of 86% for X-bearing sperm and 81% for Y-bearing sperm populations. Sorted sperm were surgically inseminated into the uterus of rabbits. From does inseminated with sorted X-bearing sperm, 94% of the offspring born were females. From does inseminated with sorted Y-bearing sperm from the same ejaculates, 81% of the offspring were males. The probability of the phenotypic sex ratios differing from 50:50 were p less than 0.0003 for X-sorted sperm and p less than 0.004 for Y-sorted sperm. Thus, the phenotypic sex ratio at birth was accurately predicted from the flow-cytometrically measured proportion of X- and Y-bearing sperm used for insemination.  相似文献   

8.
L A Johnson  D Pinkel 《Cytometry》1986,7(3):268-273
Modification of a Coulter EPICS V orthogonal laser-based flow cytometer/cell sorter allows resolution of X and Y mammalian sperm populations based on DNA content. The modification consists of beveling the sample injection tube situated in the flow chamber, adding a second fluorescence detector directly forward along the laser beam axis, and routing the collected fluorescence through an optical fiber bundle to one of the existing photomultiplier tubes. The X and Y chromosome-bearing spermatozoa from the bull, boar, and ram can be resolved using this system.  相似文献   

9.
Flow cytometric separation of X and Y chromosome-bearing spermatozoa has been demonstrated to be effective in pigs, allowing the use of boar sexed semen in in vitro trials. Sperm Mediated Gene Transfer (SMGT) is a widely used and efficient technique for the creation of transgenic animals. The present research intended to prove that it is possible to associate sperm sexing with the SMGT technique in order to speed up the assessment of homozygous lines of transgenic pigs. In the first experiment, the sorting protocol was modified in order to obtain the highest DNA uptake by sorted spermatozoa. In the second experiment, spermatozoa that had undergone only sperm sorting, only SMGT, or both procedures (Sorted-SMGT) were used for in in vitro fertilization of in vitro matured oocytes. In the third experiment, transformed blastocysts of the desired gender (male) were obtained with Sorted-SMGT in an in vitro fertilization trial. The method we developed here allowed us to produce transgenic swine blastocysts of pre-determined gender, giving a positive answer at the aim to couple SMGT and sperm sorting in swine, obtaining fertile spermatozoa able to produce transgenic embryos of pre-determined gender.  相似文献   

10.
Recently, we generated transposon-transgenic boars (Sus scrofa), which carry three monomeric copies of a fluorophore marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring). The genotype-independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to the mammalian embryo.  相似文献   

11.
This study was carried out to demonstrate bovine Y chromosome-bearing spermatozoa by rapid fluorescence in situ hybridization (FISH), using a digoxigenin (Dig)-labeled DNA probe specific to bovine Y chromosome. Before the FISH procedure, sperm heads were treated for decondensation with dithiothreitol (DTT) and glutathione (GSH) with or without heparin supplementation. Concentrations of either above 2 mM DTT or above 100 mM GSH induced swelling of the sperm head, which resulted in sufficient detection of the Y chromosome signal in sperm nuclei by rapid FISH (49.8 to 53.4%). When FISH was used with 2 mM DTT or 100 mM GSH on specimens from 7 sires, the rate of detection of the Y chromosome signal varied among sires (5.4 to 49.6%), especially that of the GSH treatment. Supplementation of GSH with heparin (100 U/mL), however, could induce reliable, repeatable detection of the Y chromosome signal in sperm nuclei of all the 7 sires (48.4 to 50.3%). These results show that in bovine spermatozoa decondensed with GSH and heparin, rapid FISH can detect Y chromosome-bearing spermatozoa.  相似文献   

12.
The present study examined the ability to establish pregnancies after transfer of pig embryos derived from in vitro fertilization (IVF) of in vitro matured (IVM) oocytes by X and Y chromosome-bearing spermatozoa sorted by flow cytometry. Cumulus-oocyte complexes (COC) were cultured in BSA-free NCSU-23 medium containing porcine follicular fluid (10%), cysteine (0.1 mg/mL), epidermal growth factor (10 ng/mL), LH (0.5 microgram/mL) and FSH (0.5 microgram/mL) for 22 h, then the oocytes were cultured without hormonal supplements for an additional 22 h. Boar semen was collected and prepared by flow cytometry sorting of X and Y chromosome bearing spermatozoa. After IVM, cumulus-free oocytes were co-incubated with sorted X or Y spermatozoa (2 x 10(4)/mL) for 6 to 7 h in modified Tris-buffered medium containing 2.5 mM caffeine and 0.4% BSA. After IVF, putative embryos were transferred to NCSU-23 medium containing 0.4% BSA for culture. A portion of the oocytes was fixed 12 h after IVF, the remainder were cultured up to 96 h. At 96 h after IVF, 8-cell to morula stage embryos (n = 30 to 35) from each gender were surgically transferred to the uterus of recipient gilts. Insemination of IVM pig oocytes with X- or Y-bearing sperm cells did not influence the rate of penetration (67 vs 80%), polyspermy (40 vs 53%), male pronuclear formation (95 vs 96%), or mean number of spermatozoa per oocyte (1.6 vs 1.6), respectively. Furthermore, no difference was observed between cleavage rates at 48 h after IVF (X, 49 vs Y, 45%). Transfer of embryos derived from X-bearing spermatozoa to 18 recipients resulted in 5 pregnancies and delivery of 23 females and 1 male piglet. Similarly, transfer of embryos derived from Y-bearing sperm cells to 10 recipients resulted in 3 pregnancies, with 9 male piglets delivered. The results show that X- and Y-bearing spermatozoa sorted using USDA sperm sexing technology can be successfully used in an IVM-IVF system to obtain piglets of a predetermined sex.  相似文献   

13.
Flow cytometry is a potential method for the separation of X and Y bearing spermatozoa, on the basis of their relative DNA content evaluated by the fluorescence emission intensity due to specific fluorochrome DNA staining. However, spermatozoa DNA is highly condensed and nuclei exhibit flat non spherical shape, which can produce artefacts impeding accurate analysis. In order to avoid these limitations, decondensation of DNA performed by enzymatic treatment and a modification of the flow cytometer that orients the spermatozoa relative to the laser beam are generally used. In this work, we describe alternative methods and materials for selection of 1) decondensed and thus dead spermatozoa without orientation, sorted on the basis of only the 10% spermatozoa containing the least DNA (expected Y) and the 10% spermatozoa containing the more DNA (expected X), or 2) native spermatozoa homogeneously oriented using a simultaneous measurement of Axial light loss (extinction) and Forward angle light scatter. For testing enrichment of each selected fraction we have worked out a molecular hybridization procedure using X and Y specific DNA probes. We analyse and sort bull spermatozoa on these basis: the purity obtained for these fractions is 80% without orientation after enzymatic treatment, and 70% on live spermatozoa "optically" oriented.  相似文献   

14.
A study was conducted to rapidly fractionate bovine spermatozoa on the basis of cell-surface H-Y antigen (i.e., Y chromosome-bearing spermatozoa). A novel, rapid immunomagnetic method was developed for removal of spermatozoa that bound to anti-H-Y IgG. Fluorescent labeling and flow cytometry were used to measure the efficiency with which spermatozoa binding to anti-H-Y were removed by the immunomagnetic technique. Washed bovine spermatozoa (n=7 bulls) were treated with a mouse monoclonal IgG antibody to H-Y antigen (MoAb 12/49). Fluorescent labeled goat antibody against mouse IgG was added to label those spermatozoa with cell-surface H-Y antigens. Supermagnetized polymer beads coated with an anti-antibody to the MoAb 12/49 were then added to the spermatozoa. After 20 min of incubation, spermatozoa were exposed for 2 min to a magnet, causing the magnetized particles to adhere to the sides of the tube. Nonmagnetized spermatozoa in the supernatent were aspirated and analyzed for fluorescent label by flow cytometry. Approximately 50% of spermatozoa not subjected to immunomagnetic separation were fluorescent labeled, and about one-half of the spermatozoa were observed microscopically to be bound to the magnetized polymer beads prior to magnetic separation (P<0.05). Following magnetic separation, only 1.2% (P<0.05) of the spermatozoa in the magnetic supernatent were fluorescent labeled. Assuming that only Y chromosome-bearing spermatozoa have cell-surface H-Y antigens, the present immunomagnetic fractionation removed almost all of the Y chromosome-bearing spermatozoa, leaving a population that was greater than 98% X chromosome-bearing spermatozoa.  相似文献   

15.
The relative DNA content of the "O" and Y chromosome-bearing sperm is presented for the creeping vole, Microtus oregoni. The animals had been trapped in Oregon and in Washington State. The two populations had very similar autosomal chromosome relationships but differed greatly in the size of their X chromosome (which is not carried by vole sperm) and in their Y chromosome. The greater size and banding differences of the Y chromosome of the Washington State vole compared to the Oregon vole paralleled the greater differences in sperm DNA between the Y-bearing sperm and the sperm carrying no sex chromosome (O). The actual DNA differences between O and Y sperm was 12.5% for the sperm from the Washington State voles and 9.1% for sperm from the Oregon voles. The difference in sperm DNA content (12.5%) for Washington State voles was far greater than the difference shown for other voles or other mammals.  相似文献   

16.
A new and improved method of preparing mammalian spermatozoa for high resolution flow cytometric DNA analysis and flow sorting is described. Ejaculated or cryopreserved sperm were briefly sonicated to remove tails and then stained with Hoechst 33342. This simple procedure was found superior to more severe treatments of dimethylsulfoxide washes, fixation in 80% ethanol, and protease digestion of the sperm membranes and tails by papain. Flow cytometric DNA analyses of sperm samples subjected to varying sonication times indicated that X and Y chromosome-bearing sperm populations could be well resolved with as little as 15-sec sonication. In addition, a comparison of sonicated samples stained with four concentrations of bisbenzimide (Hoechst 33342) or 4′,6-diamidino-2-phenylindole (DAPI) indicated that 2.5 or 5.0 μg/ml of Hoechst was sufficient to resolve the X and Y sperm populations. In order to quantitatively describe the flow cytometric data, several indices (sample quality, orientation and splitting) were developed.  相似文献   

17.
In situ hybridisation of a Y chromosome-specific DNA probe to preparations of decondensed spermatozoa revealed approximately 46.7% labelled spermatozoa among 3,900 scored. This is not significantly different from the 50% expected if only the Y chromosome-bearing spermatozoa are hybridised. Control hybridizations of Escherichia coli DNA and salmon testis DNA to decondensed sperm produced no significant labelling, whereas more than 99% of the spermatozoa were heavily labelled after hybridisation to total human DNA. These controls indicate that the methodology described in this paper renders the chromatin accessible for hybridisation and that the 50% hybridisation observed with the Y chromosome DNA probe was specific. In situ hybridisation with the Y probe therefore identifies the Y-bearing spermatozoa, and the protocol described should prove useful in evaluating methods of separating Y-bearing and X-bearing spermatozoa.  相似文献   

18.
A combination of flow cytometric sperm sorting of X and Y chromosome–bearing sperm (X and Y sperm) and computer-assisted sperm analysis (CASA) for measuring sperm motility allows assessment of motion parameters in the two populations. Bull sperm were separated into X and Y populations by flow cytometry following staining with the DNA-binding dye Hoechst 33342. The motion parameters differed depending on sperm concentration. Decreasing sperm concentration resulted in higher velocities and straighter trajectories. The concentrations of control (stained-unsorted and unstained-unsorted) and flow-sorted sperm were therefore adjusted to similar numbers (5 × 106 sperm per milliliter). Samples of sorted X and Y sperm and control sperm were transferred to prewarmed slides on a heated stage (37°C) and their motion video recorded for 2 min using a magnification of ×100 and a high-resolution camera. The sperm analysis was carried out on a Hobson Sperm Tracker (HST) using HST 7 software. The following motion parameters were measured: curvilinear, straight-line, and average path velocity; mean angular displacement (MAD); beat cross-frequency; amplitude of lateral head displacement; linearity (LIN); and straightness of path (STR). Sperm movement was unaffected by staining with Hoechst 33342, excitation by ultraviolet (UV) light, or the physical process of cell sorting. Significant differences were seen between X and Y sperm for MAD, LIN, and STR. No difference was observed for the other parameters. The results indicate that in a simple salts solution, Y bull sperm do not swim faster than X sperm but may be distinguished from X sperm on the basis of LIN and STR. Mol. Reprod. Dev. 50:323–327, 1998. Published 1998 Wiley-Liss, Inc.  相似文献   

19.
Welch GR  Johnson LA 《Theriogenology》1999,52(8):1343-1352
Laboratory validation is essential in developing an effective method for separating X and Y sperm to preselect sex. Utilizing sexed sperm from a particular experiment to test fertility and achieve the subsequent phenotypic sex without knowing the likely outcome at conception is too costly for most applications. Further, research advances need to be built on an ongoing assessment with respect to the collection of data to continue progress towards achieving a successful outcome. The Beltsville Sperm Sexing Technology, which is based on the sorting of X- and Y-bearing sperm through the process of flow-cytometric sperm sorting, is also well suited for validation in the laboratory by "sort reanalysis" of the sperm X- and Y-bearing fractions for DNA content. Since the sexing technology is based on the use of Hoechst 33342, a permeant nuclear DNA stain for sorting X- and Y-bearing sperm, it also can be the marker for determining the proportions of X and Y populations by sort reanalysis. The process consists of using an aliquot of the sorted sperm and sonicating to obtain sperm nuclei. The uniformity of the nuclear staining is re-established through the addition of more Hoechst 33342. Separate analysis of each aliquot produces a histogram that is fitted to a double gaussian curve to determine proportions of X and Y populations. The relative breadths of the distributions of DNA of X- and Y-bearing sperm within a species affects interpretations of the histogram. Sort reanalysis is consistently repeatable with differences in X/Y DNA equal to or greater than 3.0%. This information on sex ratio of the sperm then provides the precise tool by which one can predict the outcome in terms of sex, from a particular sample of semen. Simple analysis of unsorted sperm to determine the proportions of X- and Y-bearing sperm based on DNA content is also an effective tool for validating sperm-sex ratio, whether it is in a sample assumed to be 50:50 or predicted to be something other than 50:50. This simple analysis provides for a check on the potential sex ratio of any sample of semen.  相似文献   

20.
Two experiments were conducted to determine pregnancy rates in mares inseminated 1) with 5, 25 and 500 x 10(6) progressively motile spermatozoa (pms), or 2) with 25 x 10(6) sex-sorted cells. In Experiment 1, mares were assigned to 1 of 3 treatments: Group 1 (n=20) was inseminated into the uterine body with 500 x 10(6) pms. Group 2 (n=21) and Group 3 (n=20) were inseminated into the tip of the uterine horn ipsilateral to the preovulatory follicle with 25 and 5 x 10(6) pms, respectively. Mares in all 3 groups were inseminated either 40 (n=32) or 34 h (n=29) after GnRH administration. More mares became pregnant when inseminated with 500 x 10(6) (18/20 = 90%) than with 25 x 10(6) pms (12/21 = 57%; P<0.05), but pregnancy rates were similar for mares inseminated with 25 x 10(6) vs 5 x 10(6) pms (7/20 = 35%) (P>0.1). In Experiment 2, mares were assigned to 1 of 2 treatments: Group A (n=11) was inseminated with 25 x 10(6) spermatozoa sorted into X and Y chromosome-bearing populations in a skimmilk extender. Group B (n=10) mares were inseminated similarly except that spermatozoa were sorted into the skimmilk extender + 4% egg yolk. Inseminations were performed 34 h after GnRH administration. Freshly collected semen was incubated in 224 microM Hoechst 33342 at 400 x 10(6) sperm/mL in HBGM-3 for 1 hr at 35 degrees C and then diluted to 100 x 10(6) sperm/mL for sorting. Sperm were sorted by sex using flow cytometer/cell sorters. Spermatozoa were collected at approximately 900 cells/sec into either the extender alone (Group A) or extender + 4% egg yolk (Group B), centrifuged and suspended to 25 x 10 sperm/mL and immediately inseminated. Pregnancy rates were similar (P>0.1) between the sperm treatments (extender alone = 13/10, 30% vs 4% EY + extender = 5/10, 50%). Based on ultrasonography, fetal sex at 60 to 70 d correlated perfectly with the sex of the sperm inseminated, demonstrating that foals of predetermined sex can be obtained following nonsurgical insemination with sexed spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号