首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructan as a New Carbohydrate Sink in Transgenic Potato Plants   总被引:10,自引:0,他引:10       下载免费PDF全文
Fructans are polyfructose molecules that function as nonstructural storage carbohydrates in several plant species that are important crops. We have been studying plants for their ability to synthesize and degrade fructans to determine if this ability is advantageous. We have also been analyzing the ability to synthesize fructan in relation to other nonstructural carbohydrate storage forms like starch. To study this, we induced fructan accumulation in normally non-fructan-storing plants and analyzed the metabolic and physiological properties of such plants. The normally non-fructan-storing potato plant was modified by introducing the microbial fructosyltransferase genes so that it could accumulate fructans. Constructs were created so that the fructosyltransferase genes of either Bacillus subtilis (sacB) or Streptococcus mutans (ftf) were fused to the vacuolar targeting sequence of the yeast carboxypeptidase Y (cpy) gene. These constructs were placed under the control of the constitutive cauliflower mosaic virus 35S promoter and introduced into potato tissue. The regenerated potato plants accumulated high molecular mass (>5 [times] 106 D) fructan molecules in which the degree of polymerization of fructose units exceeded 25,000. Fructan accumulation was detected in every plant tissue tested. The fructan content in the transgenic potato plants tested varied between 1 and 30% of dry weight in leaves and 1 and 7% of dry weight in microtubers. Total nonstructural neutral carbohydrate content in leaves of soil-grown plants increased dramatically from 7% in the wild type to 35% in transgenic plants. Our results demonstrated that potato plants can be manipulated to store a foreign carbohydrate by introducing bacterial fructosyltransferase genes. This modification affected photosynthate partitioning in microtubers and leaves and increased nonstructural carbohydrate content in leaves.  相似文献   

2.
Hypersensitive resistance (HR) is an efficient defense strategy in plants that restricts pathogen growth and can be activated during host as well as non-host interactions. HR involves programmed cell death and manifests itself in tissue collapse at the site of pathogen attack. A novel hypersensitivity gene, Ny-1, for resistance to Potato virus Y (PVY) was revealed in potato cultivar Rywal. This is the first gene that confers HR in potato plants both to common and necrotic strains of PVY. The locus Ny-1 mapped on the short arm of potato chromosome IX, where various resistance genes are clustered in Solanaceous genomes. Expression of HR was temperature-dependent in cv. Rywal. Strains PVYO and PVYN, including subgroups PVYNW and PVYNTN, were effectively localized when plants were grown at 20°C. At 28°C, plants were systemically infected but no symptoms were observed. In field trials, PVY was restricted to the inoculated leaves and PVY-free tubers were produced. Therefore, the gene Ny-1 can be useful for potato breeding as an alternative donor of PVY resistance, because it is efficacious in practice-like resistance conferred by Ry genes.  相似文献   

3.
4.
Introduction of the tobacco retrotransposon Tto1 into diploid potato   总被引:2,自引:0,他引:2  
  相似文献   

5.
The genetic constructions based on integrative vector pGV3850 were used to introduce bacterial genes xyl and T-cyt into potato cells. The transformation was carried out using the leaf-disc method with modifications. A special system for obtaining regenerants from explants of potato in vitro plants or calli has been designed that permitted the selection of transgenic shoots. The presence of the genes in potato genome has been proved by testing the NPTII and glucoisomerase activities. The transgenic plants expressing T-cyt gene differed from the wild type in sharp decrease of the apical dominance.  相似文献   

6.
7.
Natural mutations in translation initiation factor eIF4E confer resistance to potyviruses in many plant species. Potato is a staple food crop plagued by several potyviruses, yet to date no known eIF4E-mediated resistance genes have been identified. In this study, we demonstrate that transgenic expression of the pvr1(2) gene from pepper confers resistance to Potato virus Y (PVY) in potato. We then use this information to convert the susceptible potato ortholog of this allele into a de novo allele for resistance to PVY using site-directed mutagenesis. Potato plants overexpressing the mutated potato allele are resistant to virus infection. Resistant lines expressed high levels of eIF4E mRNA and protein. The resistant plants showed growth similar to untransformed controls and produced phenotypically similar tubers. This technique disrupts a key step in the viral infection process and may potentially be used to engineer virus resistance in a number of economically important plant-viral pathosystems. Furthermore, the general public may be more amenable to the 'intragenic' nature of this approach because the transferred coding region is modified from a gene in the target crop rather than from a distant species.  相似文献   

8.
Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.  相似文献   

9.
Trait genes are usually introduced into the plant genome together with a marker gene. The last one becomes unnecessary after transgene selection and characterization. One of the strategies to produce transgenic plants free from the selectable marker is based on site-specific recombination. The present study employed the transient Cre-lox system to remove the nptII marker gene from potato. Transient marker gene excision involves introduction of Cre protein in lox-target plants by PVX virus vector followed by plant regeneration. Using optimized experimental conditions, such as particle bombardment infection method and application of P19 silencing suppressor protein, 20-27% of regenerated plants were identified by PCR analysis as marker-free. Based on our comparison of the recombination frequencies observed in this study to the efficiency of other methods to avoid or eliminate marker genes in potato, we suggest that PVX-Cre mediated site-specific excisional recombination is a useful tool to generate potato plants without superfluous transgenic sequences.  相似文献   

10.
This review focuses on the genes for the enzymes 5-enolpyruvyl-3-phosphoshikimlc acid synthase (EPSPS) and the glyphosate oxidoreductase (GOX). These genes have been used to genetically engineer plants that are resistant to the herbicide glyphosate. Overproduction of glyphosate-insensitive.EPSPS in transgenic crops has been used to overcome the deleterious effuts of this herbicide. The introduction into plants of GOX also confers glyphosate tolerance to plants and augments the tolerance of transgenic plants already expressing a glyphosate tolerant EPSPS. These genes also provide a method for selecting transformed plant tissue using the glyphosate tolerance as the selectable marker in the presence of inhibitory concentrations of glypllosate. Glyphosate tolerant transgenic plants of beet, corn, cotton, lettuce, poplar, potato, rapeseed. soybean, tobacco, tomato, and wheat have already been field tested and are entering agriculture.  相似文献   

11.
Identification of major stress tolerance genes of a crop plant is important for the rapid development of its stress-tolerant cultivar. Here, we used a yeast functional screen method to identify potential drought-tolerance genes from a potato plant. A cDNA expression library was constructed from hyperosmotic stressed potato plants. The yeast transformants expressing different cDNAs were selected for their ability to survive in hyperosmotic stress conditions. The relative tolerances of the selected yeast transformants to multiple abiotic stresses were also studied. Specific potato cDNAs expressed in the tolerant yeast transformants were identified. Sixty-nine genes were found capable of enhancing hyperosmotic stress tolerance of yeast. Based on the relative tolerance data generated, 12 genes were selected, which could be most effective in imparting higher drought tolerance to potato with better survival in salt and high-temperature stresses. Orthologues of few genes identified here are previously known to increase osmotic stress tolerance of yeast and plants; however, specific studies are needed to confirm their role in the osmotic stress tolerance of potato.  相似文献   

12.
13.
14.
The in vitro conservation of potato using tissue culture medium supplemented with the growth retardant mannitol causes morphological changes in the propagated material. These culture conditions seem to have an affect on the DNA extracted from the regenerated plants, when it is digested by the methylation sensitive restriction enzymes Hpa II/Msp I and Eco RII/Bst NI, compared to the control material. In most of these plants, there appears to be preferential methylation of nuclear domains that contain Eco RII/Bst NI recognition sites in contrast to those that contain Hpa II/Msp I sites. The refractory nature of the isolated DNA to these restriction enzymes was attributed to hypermethylation of genomic DNA and the ribosomal RNA genes. These findings indicate that methylation of DNA sequences may be an adaptive response to conditions of high osmotic stress. The importance of these results for the conservation of potato germplasm and international exchange is discussed.  相似文献   

15.
Genetic transformation with resistance (R) genes is expected to enhance resistance durability against pathogens, especially for potato, a vegetatively propagated crop with tetrasomic inheritance and a long-term breeding program. In this study, 128 potato transformants were analysed for the presence of vector T-DNA genes, borders and backbone sequences. They were harvested after transformation using a construct containing neomycin phosphotransferase II (nptII) and three R genes against potato late blight (Phytophthora infestans). Our analysis revealed that 45 % of the R gene-containing transformants possessed a low T-DNA copy number, without the integration of vector backbone and borders. The integration of vector backbone sequences was characterized using eight genes, and backbone gene tetA was selected for the early prediction of plants with backbone sequence integration. Three transformants, two plants harbouring one T-DNA copy and one plant harbouring three T-DNA copies, were crossed with susceptible cv. Katahdin. Based on our results, we conclude that all four T-DNA genes were inherited as one cluster and segregated in a Mendelian fashion. The three T-DNA inserts from the transformant harbouring three T-DNA copies were statistically proven to be un-linked and inherited into the offspring plants independently. All of the R genes were functionally expressed in the offspring plants as in their parental transformants. This functional gene stacking has important implications towards achieving more durable resistance against potato late blight.  相似文献   

16.
Elucidating the role of viral genes in transgenic plants revealed that the movement protein (MP) from tobacco mosaic virus is responsible for altered carbohydrate allocation in tobacco and potato plants. To study whether this is a general feature of viral MPs, the movement protein MP17 of potato leafroll virus (PLRV), a phloem-restricted luteovirus, was constitutively expressed in tobacco plants. Transgenic lines were strongly reduced in height and developed bleached and sometimes even necrotic areas on their source leaves. Levels of soluble sugars and starch were significantly increased in source leaves. Yet, in leaf laminae the hexose—phosphate content was unaltered and ATP reduced to only a small extent, indicating that these leaves were able to maintain homeostatic conditions by compartmentalization of soluble sugars, probably in the vacuole. On the contrary, midribs contained lower levels of soluble sugars, ATP, hexose—phosphates and UDP-glucose supporting the concept of limited uptake and catabolism of sucrose in the phloem. The accumulation of carbohydrates led to a decreased photosynthetic capacity and carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) probably owing to decreased expression of photosynthetic proteins. In parallel, levels of pathogenesis-related proteins were elevated which may be the reason for the obtained limited resistance against the unrelated potato virus Y (PVY)N in the transgenic tobacco plants. Ultrathin sections of affected leaves harvested from 2-week-old plants revealed plasmodesmal alterations in the phloem tissue while plasmodesmata between mesophyll cells were indistinguishable from wild-type. These data favour the phloem tissue to be the primary site of PLRV MP17 action in altering carbohydrate metabolism.  相似文献   

17.
18.
19.
Internodes, leaves and tuber slices from potato (Solanum tuberosum), genotype 1024-2, were subjected to particle bombardment. Transient expression was optimized using the uidA and the luc reporter genes that encode #-glucuronidase (GUS) and luciferase, respectively. Stable transformation was achieved using the neomycin phosphotransferase (nptII) gene, which confers resistance to the antibiotic kanamycin. The influence of biological parameters (tissue type, growth period before bombardment, pre- and post-bombardment osmoticum treatment) and physical parameters (helium pressure, tissue distance) that are known to possibly affect stable transformation were investigated. Putative transgenic plants, which rooted in media containing kanamycin, were obtained from all of the tissues tested although there were large differences in the efficiency: internodes (0.77 plants per bombarded explant), microtuber slices (0.10 plants per bombarded explant) and leaves (0.02 plants per bombarded explant). Southern blot analysis of putative transgenic plants confirmed the integration of the transgenes into plant DNA. The results indicate that an efficient particle bombardment protocol is now available for both transient and stable transformation of potato internodal segments, thus contributing to an enhanced flexibility in the delivery of transgenes to this important food crop.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号