首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Summary The relationship between the size and shape of regenerative outgrowth and the quantity of innervation was studied in adult Xenopus laevis. The forelimbs, of which the nerve supply was artificially altered, were amputated midway through the stylopodium and were kept for 1 year. The regenerative outgrowths that formed in normal limbs with an intact nerve supply were mainly spike-shaped and occasionally rod-shaped. However, when the nerve supply to the distal part of the forelimb was augmented by surgically diverting ipsilateral sciatic nerve bundles, the quantity of innervation was increased to about two and a half times that of the normal limb. These hyperinnervated outgrowths were somewhat larger than those of the normally innervated outgrowths and the majority of them were oar-shaped, a type hardly ever encountered in normal regeneration. In contrast, when partial denervation was performed concomitantly with limb amputation, by ablation of the N. radialis at the shoulder joint, the quantity of innervation decreased to about one half that of the normal limb. The outgrowths obtained were spike-shaped in all cases, with their size being about half that of the normally innervated outgrowths. Furthermore, when both the N. radialis and N. ulnaris were ablated in the same way, the amputated limbs were mostly non-regenerative, but some of them regenerated small conical outgrowths. Based on these results, a discussion is presented concerning the relationship between a regenerative outgrowth and the innervation of the forelimb in Xenopus.  相似文献   

2.
Following injury of sciatic motor axons in the rat, the rate of axonal outgrowth is faster if there has been a prior “conditioning” axotomy. The acceleration of outgrowth is due to an acceleration of SCb, the rate [slow (SC)] component of axonal transport that carries cytomatrix proteins; this occurs throughout the axon by 7 days after the conditioning axotomy (Jacob and McQuarrie, 1991a, J. Neurobiol. 22:570–583). To further characterize the conditioning lesion effect (CLE), it is important to know (1) the minimum effective conditioning interval (time between conditioning and testing lesions), (2) whether the cell body reaction is required, and (3) whether outgrowth accelerates after a single axotomy. Outgrowth distances were measured by radiolabeling all newly synthesized neuronal proteins and detecting those carried to growth cones by fast axonal transport. When the conditioning and testing lesions were made simultaneously (0 day conditioning interval), there was no CLE. With a conditioning interval of 3 days, there was a shortening of the initial delay (before the onset of outgrowth) without a change in outgrowth rate. With conditioning intervals of 7, 14, and 21 days, the rates of outgrowth were increased by 8%, 22%, and 11%, respectively. To determine whether the cell body reaction to axotomy is necessary for the CLE, a nonaxotomizing stimulus to axonal growth (partial denervation) was used in place of a conditioning axotomy. This had no effect on the rate of outgrowth from a testing lesion made 14 days later. Finally, we examined the possibility that outgrowth accelerates after a single lesion. Outgrowth was faster at 6–9 days after axotomy than at 3–6 days (p < 0.001), and accelerated further at 9–12 days (p < 0.001). We conclude that (1) the shortest effective conditioning interval is 3 days; (2) the cell body reaction is necessary for the CLE; (3) axonal outgrowth from a single axotomy accelerates in concert with the anabolic phase of the cell body reaction. The SCb motor is, in turn, upregulated by this reaction. This suggests that the SCb motor responds to a fast-transported signal that is a product of the cell body reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Targets in limb regions of the chick embryo are further removed from the dorsal root ganglia that innervate them compared with thoracic ganglion-to-target distances. It has been inferred that axons grow into the limb regions two to three times faster than into nonlimb regions. We tested whether the differences were due to intrinsic properties of the neurons located at different segmental levels. Dorsal root ganglia (DRG) were isolated from the forelimb, trunk, and hind limb regions of stage 25–30 embryos. Neurite outgrowth was measured in dissociated cell culture and in cultures of DRG explants. Although there was considerable variability in the amount of neurite outgrowth, there were no substantive differences in the amount or the rate of outgrowth comparing brachial, thoracic, or lumbosacral neurons. The amount of neurite outgrowth in dissociated cell cultures increased with the stage of development. Overall, our data suggest that DRG neurons express a basal amount of outgrowth, which is initially independent of target-derived neurotrophic influences; the magnitude of this intrinsic growth potential increases with stage of development; and the neurons of the DRG are not intrinsically specified to grow neurites at rates that are matched to the distance they are required to grow to make contact with their peripheral targets in vivo. We present a speculative model based on Poisson statistics, which attempts to account for the variability in the amount of neurite outgrowth from dissociated neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
In order to confirm the presence of immunoreactive insulin (IRI) in the serum of postmetamorphic Xenopus laevis, radioimmunoassay (RIA) methods were used. The concentration of hormone found in samples of blood serum taken from nonanaesthetized intact male and female animals by the guillotine method was 10.46 +/- 0.76 microU/ml. Significantly higher IRI concentrations were found in our intact animals anaesthetized in MS 222 at pH 3.5 (21.9 microU/ml) compared with intact controls anaesthetized in MS 222 adjusted to pH 7.0 (14.4 microU/ml). During the wound-healing stage subsequent to forelimb amputation in the experimental cases (0 hours to 3 days) anaesthetized in MS 222 pH 7.0, there were intervals of significantly elevated serum IRI followed by a period of decreased IRI concentration compared with the levels in anaesthetized (MS 222 pH 7.0) and nonanaesthetized intact controls. These fluctuations were due, presumably, to stress caused by amputational injury and/or anaesthetic. Serum IRI increased steadily from 3 to 14 days postamputation then remained stable for the balance of the regeneration period (28 days) compared with nonanesthetized intact controls. A positive correlation was found between immunoreactive insulin and glucose levels in the serum of our animals. However, no correlation exists between serum IRI levels and serum osmolality in the data.  相似文献   

5.
A two-site radio-immunoassay for βNGF demonstrated 5–10 pg of NGF in the normal, adult rat iris. Ciliarectomy or sympathectomy did not significantly alter the amount of NGF after 10 days. However, denervation including all sensory axons (stereotactic lesion distal to the trigeminal ganglion) increased the level to about 100 pg of NGF. Total denervation resulting from homologous transplantation of the iris gave a similar increase after only 2 days. Fibre outgrowth responses evoked by corresponding iris explants in an NGF bioassay supported the results and suggested in addition that sympathetic denervation may cause a moderate transient increase in NGF after 3 days. It seems that sensory nerves in particular influence the level of NGF in a terminal field, either by a high capacity for uptake and removal of NGF or by exerting a negative feed-back on the production or processing of this growth factor.  相似文献   

6.
Neural Control of Cell Cycle Events in Regenerating Salamander Limbs   总被引:1,自引:0,他引:1  
Nerves, wound epidermis, and injury are indispensable for salamanderlimb regeneration, but their mechanism of action is not understood.A hypothesis has been presented (Tassava and Mescher, 1975)which suggests that injury is important to dedifferentiationand entry of limb stump cells into the cell cycle, nerves arerequired for one or more G2 events in order that cells can proceedto mitosis, and the wound epidermis maintains the daughter cellsin the cell cycle. The resultant cells accumulate to form theblastema. Complete and partial denervation experiments, which attemptedto test this hypothesis, are discussed. Blastema cell cycleparameters, measured after complete denervation, did not varygreatly from innervated controls, even though denervated blastemaswere resorbed. Blastema cell cycle parameters of partially denervatedlimbs, which exhibited delayed regeneration, were likewise notlengthened when compared to completely innervated controls.These results are consistent with the view that after eithercomplete or partial denervation, some blastema cells continueto cycle and reach the M phase in the same time as controls.Other blastema cells block completely, never reach M, and arethen removed. A possible mechanism for resorption of denervatedblastemas is presented.  相似文献   

7.
Corticospinal axon outgrowth in vivo and the ability to sprout or regenerate after injury decline with age. This developmental decline in growth potential has been correlated with an increase in inhibitory myelin‐associated proteins in older spinal cord. However, previous results have shown that sprouting of corticospinal fibers after contralateral lesions begins to diminish prior to myelination, suggesting that a decrease in growth promoting and/or an increase in inhibitory molecules in spinal gray matter may also regulate corticospinal axon outgrowth. To address this possibility, we carried out in vitro experiments to measure neurite outgrowth from explants of 1‐day‐old hamster forelimb sensorimotor cortex that were plated onto membrane carpets or membrane stripe assays prepared from white or gray matter of 1‐to 22‐day‐old cervical spinal cord. On uniform carpets and in the stripe assays cortical neurites grew robustly on young but not older membranes from both white and gray matter. Mixtures of membranes from 1‐ and 15‐day spinal cord inhibited neurite outgrowth, suggesting that the presence of inhibitory molecules in the 15‐day cord overwhelmed permissive or growth promoting molecules in membranes from 1‐day cord. Video microscopic observations of growth cone behaviors on membrane stripe assays transferred to glass coverslips supported this view. Cortical growth cones repeatedly collapsed at borders between permissive substrates (laminin or young membrane stripes) and nonpermissive substrates (older membrane stripes). Growth cones either turned away from the older membranes or reduced their growth rates. These results suggest that molecules in both the gray and white matter of the developing spinal cord can inhibit cortical neurite outgrowth. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 393–406, 1999  相似文献   

8.
Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real‐time RT‐PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up‐regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down‐regulation of cell cycle pathways, especially rno04110.  相似文献   

9.
Helisoma neurons B5, regenerating axonal arbors following crush-axotomyin vivo, displayed a transient (<24 h) reduction in excitability followed by a sustained period of hyperexcitability (>13 d). Neurons isolated into outgrowth-permissive cell culture conditions expressed a similar pattern of hypo- and hyperexcitability; however, excitability of neurons B5 in culture was elevated for only 5 d and then declined to a lower, stable level. The expression of these alterations in excitability was neurite outgrowth-independent and required the presence of ganglia-derived conditioning factors in the culture medium. Excitability of neurons in medium lacking conditioning factors fell by day 3 to minimal levels. Conditioned medium was effective in rescuing excitability of neurons deprived of conditioning factors during their first 3 days of cell culture, but not following longer periods of deprivation. Exposure to the protein synthesis inhibitor, anisomycin, blocked the ability of conditioning factors to rescue B5 neuronal excitability. Together, results from cell culture suggest that mechanisms underlying neuronal excitability following nerve injury are independent of process outgrowth state, but require exposure to conditioning factors derived from injured neural tissue within several days of axonal insult. Although changes in B5 neurite outgrowth and neuronal excitability were expressed simultaneously following axonal injury, their independence suggests the existence of an underlying regenerative state that regulates both cellular modifications.  相似文献   

10.
Isolated adult frog dorsal root ganglion neurons survive in vitro in a defined medium for more than 4 weeks and extend processes. When co-cultured with a 1-mm piece of peripheral nerve the average tottal process lenght per neuron was 10 times longer than that of control neurons by 8 days, and the processes had a significantly different morphology from that of control neurons. This influence on process length increased with increasing time of nerve denervation length increased with increasing time of nerve denervation prior to co-culturing. These results suggest the release of a neurotrophic factor/s from the cells of the peripheral nerve. The neurotropic influence was completely blocked by antibodies against mouse nerve growth factor (NGF). Although NGF increased the average process length by twofold over control neurons, its influence never reached that of the nerve-released factor, and the NGF-induced processes had a distinctly different morphology. The frog nerve-released factor promoted process outgrowth from E11 chick sympathetic ganglia, although the process number, length, and their fasciculation differed greatly from those induced by NGF. These results suggest that the nerve-released factor/s are immunologically and functionally related to NGF but have not estabished whether a single factor or an aggregate of several secreted molecules are responsible. This article presents a new preparation in which the varied influences of different neurotrophic factors can be studied in great detail on large populations of isolated adult vertebrte neurons and sets the stage for the characterization and isolation of the frog peripheral nerve neurotrophic factor, as well as examining the influence of this facor on neuronal morphology and its ability to direct process outgrowth. 1994 John Wiley & Sons, Inc.  相似文献   

11.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum‐bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin‐1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth‐promoting to outgrowth‐inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 285–301, 2002  相似文献   

12.
13.
The immediate effects of total or partial denervation of single digits (0-16 hr after nerve transection) on primary somatosensory cortex were studied electrophysiologically. Comparisons of response properties and cortical somatotopy were made between intact raccoons and four groups of raccoons with transection of some or all of the nerves innervating the fourth or fifth digit. Animals with all four digital nerves cut (amputation of the digit) were most different from normal. Approximately half of the penetrations in the affected cortical region showed inhibitory responses to stimulation of adjacent skin regions. These consisted of a strong response to stimulus offset and/or a suppression of spontaneous activity during indentation. Since these responses were substantially different from those recorded several months after digit amputation, additional changes in connectivity and synaptic strength must occur with chronic denervation. These inhibitory responses were not seen in animals with one, two, or three nerves cut per digit.

In the animals with partial denervation of a digit, the greatest disruption occurred when both ventral nerves to the glabrous skin were transected. This yielded cell clusters with abnormally large receptive fields, disruptions in somatotopic organization, and a decreased occurrence of low-threshold responses. If only one nerve to glabrous skin was transected, there was less change, even if it was combined with transection of both nerves to hairy skin. These results suggest that the release of inhibitory responses in a cortical digital region by amputation is prevented by the retention of even one ventral nerve. None of the denervation conditions produced large nonresponsive areas of cortex, which would have indicated a loss of all inputs.  相似文献   

14.
Activation of Ras into the GTP-binding, 'ON' state is a key switch in the neurotrophin-mediated neuronal survival and neurite outgrowth, in vitro as well as in vivo . In the current study we explored changes in GTP-Ras levels following facial nerve injury and the ensuing regeneration and the effects of perturbing these changes in vivo using synapsin-promoter mediated neuronal expression of constitutively active Val12H-Ras (synRas). Quantification of GTP-Ras and total Ras revealed a precipitous drop in the relative GTP-Ras levels in the axotomized facial motor nucleus, to 40% of normal levels at 2 days after cut, followed by a partial recovery to 50–65% at 4–28 days. On western blots, control and axotomized nuclei from synRas mutants showed a 2.2- and 2.5-fold elevation in GTP-Ras, respectively, compared with their wild type littermate controls ( p  < 5%, anova , TUKEY post-hoc ), with the levels in the axotomized synRas nucleus slightly but not significantly above that in the uninjured littermate control ( p  = 9.9%). Similar increase was also observed in the pERK but not pAKT targets of the Ras cascade. This moderate elevation of GTP-Ras strongly curtailed post-traumatic neuronal cell death (−65%), the influx of T-cells (−48%) as well as other parameters of neuroinflammatory response. Although synRas did not affect the speed of axonal regeneration or functional recovery it caused a very pronounced increase in central axonal sprouting. These current data emphasize the role of reduced active Ras, and by extension, the reduced overall level of retrograde neurotrophin signalling after axotomy, in mediating post-traumatic cell death and inflammation and in restricting the sprouting response. Moreover, the neuroprotective and central sprouting-enhancing effects of neuronal Val12H-Ras could help promote recovery in CNS injury.  相似文献   

15.
Summary Structural and functional behaviour of motor end-plates after transection of the motor nerve has been studied in two species of frog: Rana esculenta and Rana temporaria. The physiological results show that in both species there is a transient cessation of spontaneous activity followed by a resumption of miniature end-plate potentials (min. e.p.p.s.) after denervation. The characteristics of these potentials (frequency, distribution of amplitudes, time-course) are similar in the two species. However, some differences have been observed: Firstly, the period of silence lasts for 2–4 days in the case of Rana temporaria whereas it is prolonged to about 15 days in Rana esculenta. Secondly, the resumption of min. e.p.p.s. is gradual and after the 10th day of denervation remains constant in Rana temporaria. It is inconstant independent of the period of denervation in Rana esculenta. The morphological results show that the Schwann cell is constantly in contact with the post-synaptic membrane after about 6 days of denervation in both species. It is suggested that either the Schwann cell is capable of functioning for a limited period of time in Rana esculenta or is activated to produce min. e.p.p.s. only in certain cases.  相似文献   

16.
Cellular behavior along the anteroposterior axis of the regenerating axolotl forelimb was studied by use of triploid (3N) tissue grafted into diploid (2N) hosts and three-dimensional computer reconstructions. Asymmetrical upper forelimbs were surgically constructed with one half (anterior or posterior) 3N and the other half 2N. Limbs were amputated immediately after grafting or were permitted to heal for 5 or 30 days prior to amputation. When regenerates had attained the stage of digital outgrowth, the limbs were harvested and sectioned in the transverse axis for histological analysis. When all limbs bearing anterior grafts were considered as a group, 77% of the 3N mesodermal cells were observed in the anterior side of the regenerates and 23% were located in the posterior side of the regenerates. When all limbs bearing posterior grafts were considered as a group, 76% of the 3N mesodermal cells were found in the posterior side of the regenerate and 24% had crossed into the anterior side. Healing times of 0, 5, or 30 days prior to amputation had no effect on the experimental outcome. Three-dimensional computer reconstructions revealed that most 3N cells of mesodermal origin underwent short-distance migration from anterior to posterior or from posterior to anterior and intermixed with diploid mesodermal cells near the midpoint of the regenerated anteroposterior axis. Some 3N cells were observed at greater distances from the graft-host interface. By contrast, labeled epidermal cells from both anterior and posterior grafts exhibited long-distance migration across all surfaces of regenerated limbs. Details of a computer-assisted reconstructive method for studying the three-dimensional distribution of labeled cells in tissues are presented.  相似文献   

17.
Human esophageal, tracheal, and pancreatic ductal fragments were collected at autopsy after a postmortem interval of 12 hours or less and maintained in explant organ culture for 30 days. The viability and growth of the explants was assessed by morphology, LDH enzyme release, and cellular outgrowth. The viability and growth of the bronchial explant epithelium was directly related to the postmortem interval. Esophageal epithelial regeneration followed the desquamation of the superficial cell layers. Pancreatic epithelia appeared to grow more slowly and with less outgrowth than the other tissues. Epithelial cell growth along the explant surface and onto the culture dish appeared to proceed through the well-characterized process that follows cell injury, i.e., flattening, migration, replication, and differentiation. Thus, sufficient numbers of viable epithelial cells capable of regeneration were present in routine autopsy epithelium, but there was considerable variation from tissue to tissue and case to case. The most effective and accurate approach to follow when evaluating and predicting the growth and viability of these explants is by using a combination of morphologic, enzymatic and biologic assays. Errors in the interpretation of viability are possible when only one assay method is utilized. These tissues grown in explant organ culture are suitable for studies on the mechanism and response of epithelia to cell injury, recovery and wound healing.Abbreviations 4F-1G 4% formaldehyde, 1% glutaraldehyde - HIFBS heat inactivated fetal bovine serum - IA immediate autopsy - LDH lactate dehydrogenase - OsO4 osmium tetroxide - RA routine autopsy  相似文献   

18.
Neurite outgrowth from endogenous or transplanted cells is important for neural regeneration following nerve tissue injury. Modified substrates often provide better environments for cell adhesion and neurite outgrowth. This study was conducted to determine if MWCNT (multiwalled carbon nanotube)-coated electrospun PLCL [poly (l-lactic acid-co-3-caprolactone)] nanofibres improved the neurite outgrowth of PC-12 cells. To accomplish this, two groups, PC-12 cells in either uncoated PLCL scaffolds or MWCNT-coated PLCL scaffolds were cultured for 9 days. MWCNT-coated PLCL scaffolds showed improved adhesion, proliferation and neurite outgrowth of PC-12 cells. These findings suggest that MWCNT-coated nanofibrous scaffolds may be an attractive platform for cell transplantation application in neural tissue engineering.  相似文献   

19.
Because the integrity of an axon depends on the supply of proteins synthesized in the cell body, we examined the effect of axotomy on the transport of structural proteins in rat motor axons, and the effect of altered transport on the rate of outgrowth after a subsequent testing axotomy. To examine the axonal transport of structural proteins, we labeled newly synthesized proteins with 35 S-methiomine 7 days after a “conditioning” lesion of the sciatic nerve, and removed the nerve 7–21 days later for SDS-PAGE. Tubulin, actin, calmodulin, and the 68-kD light neurofilament protein (NF-L) were identified by fluorography and removed for liquid scintillation counting. The fastest moving structural proteins were carried by slow component b (SCb) of axonal transport, which advanced 20% faster in conditioned axons: 4.2 versus 3.5 mm/day (p < 0.01). NF-L was not accelerated, indicating that the motor for subcomponent a (SCa) of slow axonal transport was unaffected by axotomy. To measure outgrowth distances, the testing lesion was made 7 days after the conditioning lesion, and growth cones were located by the fast transport method 3 or 9 days later. The regression analysis of outgrowth distance on time showed that sprouts elongated 25% faster in conditioned axons: 4.0 versus 3.2 mm/day (p < 0.001). These accelerated sprouts were formed too far from the spinal cord to contain SCb proteins that were synthesized after axotomy. Because the rate of outgrowth correlates closely with the rate of SCb in outgrowing sprouts (McQuarrie and Jacob, J. Comp. Neurol. 305:139–147, 1991), we conclude that SCb is accelerated throughout the length of the axon by 7 days after axotomy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号