首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We measured the serum concentration of 25-hydroxyvitamin D3 (25-OH-D3) and 1,25-dihydroxyvitamin D3 (1,25-[OH]2-D3) in 23 different Platyrrhines from four different genera and in 21 Catarrhines from six different genera in residence at the Los Angeles Zoo. The mean (±S.E.) serum concentration of 1,25-(OH)2-D3 was significantly greater in Platyrrhines (810 ± 119 pg/ml) than in Catarrhines (61 ± 5 pg/ml), suggesting that high circulating concentrations of the active vitamin D hormone were a characteristic of New World primates in both the Cebidae and Callitrichidae family. This increase in the serum concentration of 1,25-(OH)2-D3 is probably an adaptational response on the part of Platyrrhini to offset a relative decrease in the concentration of specific receptor for 1,25-(OH)2-D3 in target tissues for the hormone.  相似文献   

2.
We investigated the occurrence of rickets in adolescent tamarins (Saguinus imperator) residing at the Los Angeles Zoo. Compared to tamarins in the same colony without clinical evidence of bone disease (N = 6), rachitic platyrrhines (N = 3) had a decrease in their serum calcium concentration (P < .05). The affected tamarins also had lower serum 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) levels than did nonaffected colony mates, but 2–10-fold higher concentrations than in Old World primates of a comparable developmental stage. New World primates in many different genera are known to exhibit target organ resistance to the active vitamin D3 metabolite, 1,25-(OH)2D3, compensated by maintenance of high circulating concentrations of 1,25-(OH)2D3. The relatively low serum 1,25-(OH)2D3 concentration in rachitic tamarins and ultraviolet B radiation deficient environment of these primates suggested that bone disease may be linked to a deficiency in substrate for 1,25-(OH)2D3, 25 hydroxyvtamin D3 (25-OHD3). Chronic exposure of platyrrhines in three different vitamin D resistant genera to an artificial UVB source resulted in 1) a significant increase in the mean serum 25-OHD3 (P < .001) and 1,25-(OH)2D3 (P < .02) level over that encountered in platyrrhines not exposed to UVB; and 2) prevention of rachitic bone disease in irradiated individuals. These data further show that the serum 25-OHD3 and 1,25-OH2D3 levels are positively correlated in vitamin D-resistant platyrrhines (r = 0.64; P= .0014) and suggest that a compromise in cutaneous vitamin D3 production by means of UVB deprivation may limit necessary 1,25-(OH)2D3 production. © 1992 Wiley-Liss, Inc.  相似文献   

3.
We evaluated the viability of 1α,25-dihydroxyvitaminD3-3β-[N-(4-azido-2-nitrophenyl)glycinate] (1,25-(OH)2-D3-ANG), an analog of 1α,25-dihydroxyvitamin D3 (1,25-(OH)2-D3) as a photoaffinity probe for 1,25-(OH)2-D3 receptor in chick intestinal cytosol. A competitive-binding assay revealed that chick intestinal cytosolic 1,25-(OH)2- D3 receptor bound to 1,25-(OH)2-D3-ANG approximately 20-times less effectively than it did to 1,25-(OH)2-D3. Irradiation of 1,25-(OH)2-D3- ANG in the presence of chick intestinal cytosolic preparation significantly diminished subsequent binding to 3H-1,25-(OH)2-D3, suggesting that the photoaffinity analog was covalently attached to the receptor. Therefore the nitroarylazide derivative of 1,25-(OH)2-D3 may be a valuable photoaffinity probe for the characterization of the 1,25-(OH)2-D3 receptor.  相似文献   

4.
25-OH-D3 and 1,25-(OH)2-D3 had no effects by themselves on the cyclic AMP levels of isolated bone cells but enhanced the stimulation seen following an exposure with submaximal concentrations of PTH for as little as 2 minutes. Preincubation with the 25-OH-D3 or 1,25-(OH)2-D3 resulted in a time dependent decrease in the enhancement of PTH response over a 1 hr period. It is, therefore, suggested that cyclic AMP may be involved in some aspects of the action of vitamin D3 derivatives on bone cells.  相似文献   

5.
1α,25-Dihydroxy-2β-(3-hydroxypropoxy)vitamin D3 (ED-71), an analog of active vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], possesses a hydroxypropoxy substituent at the 2β-position of 1,25(OH)2D3. ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)2D3. Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)2D3, an epimer of 1,25(OH)2D3 at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)2D3 at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D3 analogs were found to be 1,25(OH)2D3 > ED-71 ≥ 3-epi-1,25(OH)2D3  3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

6.
New material of the early anthropoid primate Qatrania wingi and a new species of that genus are described. Several features of the dental anatomy show that Qatrania, while quite primitive relative to other anthropoids in many ways, is most likely a parapithecid primate. The new material suggests that several dental features previously thought to ally parapithecids with the catarrhine primates were actually evolved in parallel in catarrhines and some parapithecids. Furthermore, all nonparapithecid anthropoids (including platyrrhines and catarrhines) share a suite of derived dental and postcranial features not found in parapithecids. Therefore, parapithecid origins may predate the platyrrhine/catarrhine split.  相似文献   

7.
Summary 1,25-Dihydroxyvitamin D3 (1,25-(OH)2-D3) is known to decrease the proliferation and increase the differentiation of different cell types including human keratinocytes. The growth and differentiation of keratinocytes in the presence of 1,25-(OH)2-D3 using serum-free media formulations has been described previously. This investigation extends these studies to describe various culture conditions with human foreskin keratinocytes to determine the optimal antiproliferative activity of 1,25-(OH)2-D3. Keratinocytes were plated onto tissue culture dishes using one of three basic serum-free media protocols; a) with no feeder layer in keratinocyte growth medium (KGM); b) onto mitomycin C-treated 3T3 mouse embryo fibroblasts; or c) onto mitomycin C-treated dermal human fibroblasts. The last two protocols utilized Dulbecco's modified Eagle's Medium (DMEM) supplemented with growth factors. Keratinocyte cell growth was greatest in the KGM medium. Although the growth of keratinocytes on either feeder layer was similar, there were differences in the ability of the cells to form envelopes in the presence of 1,25-(OH)2-D3. The addition of hydrocortisone and cholera toxin to the medium also affected the response of the keratinocytes to 1,25-(OH)2-D3. The antiproliferative effect of 1,25-(OH)2-D3 was not altered by varying the extracellular calcium levels from 0.25 to 3 mM. The antiproliferative activity of 1,25-(OH)2-D3 is attenuated in cells at low density. Our results suggest that an optimal condition to investigate the ability of 1,25-(OH)2-D3 to inhibit keratinocyte proliferation is at preconfluent cell density in the presence of KGM supplemented with 1.5 mM calcium without a feeder layer. These conditions are not appropriate for investigating the enhancement of differentiation by 1,25-(OH)2-D3, but can be used to assay other agents that modulate keratinocyte proliferation. Portions of this work were presented and abstracted at the April 1988 meeting of the Society of Investigative Dermatology (J. Inv. Derm. 90(4): 586; 1988) and the February 1988 meeting of New York Academy of Sciences (Ann NY Acad. Sci. 548: 341–342; 1988).  相似文献   

8.
It is known that after birth of a vertebrate there is a requirement for the metabolism of Vitamin D3 (cholecalciferol) to 1,25-(OH)2-Vitamin D3 to produce the hormonally active form essential for calcium homeostasis. However it is not known whether the enzymatic capability to produce 1,25-(OH)2-D3 only appears after birth or whether it is generated in the embryo. Presented in this paper are results of studies designed to measure the production and localization of 1,25-(OH)2-D3 in the embryo. It was found that the renal enzyme, 25-OH-cholecalciferol-1-hydroxylase, which is capable of producing 1,25-(OH)2-D3, is present as early as day 9 of incubation (12 days before hatch) in White Leghorn chicks. Further, the enzyme activity increases 6-fold to a maximal level which occurs on the day of hatching. 1,25-(OH)2-D3 was shown to be produced in vivo at day 17 and was found then in low levels in the embryonic intestine and kidney. Thus we have shown that 1,25-(OH)2-D3 is made by embryonic chick kidneys and is found in low levels in embryonic chick intestine and kidney significantly before hatch.  相似文献   

9.

Background

Interpretation of parathyroid hormone (iPTH) requires knowledge of vitamin D status that is influenced by season.

Objective

Characterize the temporal relationship between 25-hydroxyvitamin D3 levels [25(OH)D3] and intact iPTH for several seasons, by gender and latitude in the U.S. and relate 25-hydrovitamin D2 [25(OH)D2] levels with PTH levels and total 25(OH)D levels.

Method

We retrospectively determined population weekly-mean concentrations of unpaired [25(OH)D2 and 25(OH)D3] and iPTH using 3.8 million laboratory results of adults. The 25(OH)D3 and iPTH distributions were normalized and the means fit with a sinusoidal function for both gender and latitudes: North >40, Central 32–40 and South <32 degrees. We analyzed PTH and total 25(OH)D separately in samples with detectable 25(OH)D2 (≥4 ng/mL).

Findings

Seasonal variation was observed for all genders and latitudes. 25(OH)D3 peaks occurred in September and troughs in March. iPTH levels showed an inverted pattern of peaks and troughs relative to 25(OH)D3, with a delay of 4 weeks. Vitamin D deficiency and insufficiency was common (33% <20 ng/mL; 60% <30 ng/mL) as was elevated iPTH levels (33%>65 pg/mL). The percentage of patients deficient in 25(OH)D3 seasonally varied from 21% to 48% and the percentage with elevated iPTH reciprocally varied from 28% to 38%. Patients with detectable 25(OH)D2 had higher PTH levels and 57% of the samples with a total 25(OH)D > 50 ng/mL had detectable 25(OH)D2.

Interpretation

25(OH)D3 and iPTH levels vary in a sinusoidal pattern throughout the year, even in vitamin D2 treated patients; 25(OH)D3, being higher in the summer and lower in the winter months, with iPTH showing the reverse pattern. A large percentage of the tested population showed vitamin D deficiency and secondary hyperparathyroidism. These observations held across three latitudinal regions, both genders, multiple-years, and in the presence or absence of detectable 25(OH)D2, and thus are applicable for patient care.  相似文献   

10.
To elucidate whether PTH(7-84), a degradation product of PTH(1-84), which inhibits PTH(1-84)-induced bone resorption, also exerts an antagonistic effect on the kidney, we studied the effect of PTH(7-84) on PTH(1-34)-induced production of 1,25-(OH)2D3 in primary cultured murine renal tubules.Neonatal mouse renal tubules cultured in serum-free MEM for 7 days were treated with PTH(1-34) and/or PTH(7-84). Three hours after addition of 25-OHD3 (10−6 M), 1,25-(OH)2D3 was determined. PTH(1-34) stimulated the conversion of 25-OHD3 to 1,25-(OH)2D3, and PTH(7-84) dose-dependently inhibited this process. Real-time PCR revealed that PTH(1-34) increased the expression level of 1α-hydroxylase mRNA, whereas PTH(7-84) did not affect the expression level 1α or 24-hydroxylase mRNA.These in vitro data suggest that PTH(7-84) elicits an antagonistic effect in renal tubules through receptors different from the type I PTH/PTHrP receptor. This may at least partly account for the decreased serum level of 1,25-(OH)2D in patients with severe primary hyperparathyroidism with renal failure.  相似文献   

11.

Background

Hypocalcemia is a frequent abnormality that has been associated with disease severity and outcome in hospitalized foals. However, the pathogenesis of equine neonatal hypocalcemia is poorly understood. Hypovitaminosis D in critically ill people has been linked to hypocalcemia and mortality; however, information on vitamin D metabolites and their association with clinical findings and outcome in critically ill foals is lacking. The goal of this study was to determine the prevalence of vitamin D deficiency (hypovitaminosis D) and its association with serum calcium, phosphorus, and parathyroid hormone (PTH) concentrations, disease severity, and mortality in hospitalized newborn foals.

Methods and Results

One hundred newborn foals ≤72 hours old divided into hospitalized (n = 83; 59 septic, 24 sick non-septic [SNS]) and healthy (n = 17) groups were included. Blood samples were collected on admission to measure serum 25-hydroxyvitamin D3 [25(OH)D3], 1,25-dihydroxyvitamin D3 [1,25(OH) 2D3], and PTH concentrations. Data were analyzed by nonparametric methods and univariate logistic regression. The prevalence of hypovitaminosis D [defined as 25(OH)D3 <9.51 ng/mL] was 63% for hospitalized, 64% for septic, and 63% for SNS foals. Serum 25(OH)D3 and 1,25(OH) 2D3 concentrations were significantly lower in septic and SNS compared to healthy foals (P<0.0001; P = 0.037). Septic foals had significantly lower calcium and higher phosphorus and PTH concentrations than healthy and SNS foals (P<0.05). In hospitalized and septic foals, low 1,25(OH)2D3 concentrations were associated with increased PTH but not with calcium or phosphorus concentrations. Septic foals with 25(OH)D3 <9.51 ng/mL and 1,25(OH) 2D3 <7.09 pmol/L were more likely to die (OR=3.62; 95% CI = 1.1-12.40; OR = 5.41; 95% CI = 1.19-24.52, respectively).

Conclusions

Low 25(OH)D3 and 1,25(OH)2D3 concentrations are associated with disease severity and mortality in hospitalized foals. Vitamin D deficiency may contribute to a pro-inflammatory state in equine perinatal diseases. Hypocalcemia and hyperphosphatemia together with decreased 1,25(OH)2D3 but increased PTH concentrations in septic foals indicates that PTH resistance may be associated with the development of these abnormalities.  相似文献   

12.
13.
The endocrine feedback loop between vitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH) plays a central role in skeletal development. PTH‐related protein (PTHrP) shares homology and its receptor (PTHR1) with PTH. The aim of this study was to investigate whether there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate, in parallel with the endocrine feedback loop between 1,25(OH)2D3 and PTH. This was investigated in ATDC5 cells treated with 10?8 M 1,25(OH)2D3 or PTHrP, Col2‐pd2EGFP transgenic mice, and primary Col2‐pd2EGFP growth plate chondrocytes isolated by FACS, using RT‐qPCR, Western blot, PTHrP ELISA, chromatin immunoprecipitation (ChIP) assay, silencing of the 1,25(OH)2D3 receptor (VDR), immunofluorescent staining, immunohistochemistry, and histomorphometric analysis of the growth plate. The ChIP assay confirmed functional binding of the VDR to the PTHrP promoter, but not to the PTHR1 promoter. Treatment with 1,25(OH)2D3 decreased PTHrP protein production, an effect which was prevented by silencing of the VDR. Treatment with PTHrP significantly induced VDR production, but did not affect 1α‐ and 24‐hydroxylase expression. Hypertrophic differentiation was inhibited by PTHrP and 1,25(OH)2D3 treatment. Taken together, these findings indicate that there is a functional paracrine feedback loop between 1,25(OH)2D3 and PTHrP in the growth plate. 1,25(OH)2D3 decreases PTHrP production, while PTHrP increases chondrocyte sensitivity to 1,25(OH)2D3 by increasing VDR production. In light of the role of 1,25(OH)2D3 and PTHrP in modulating chondrocyte differentiation, 1,25(OH)2D3 in addition to PTHrP could potentially be used to prevent undesirable hypertrophic chondrocyte differentiation during cartilage repair or regeneration. J. Cell. Physiol. 229: 1999–2014, 2014. © 2014 Wiley Periodicals, Inc.
  相似文献   

14.
Female rats were given 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 0.25 g per 100 g body weight (bw), 25-hydroxyvitamin D3 (25(OH)D3), 1.7 g/100 g bw or 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) 1.7 g/100 g bw, subcutaneously three times a week for 12 weeks. Traditional variables pertaining to calcium homeostasis and growth, i.e. blood and urine calcium (Ca) and phosphate (P), serum levels of vitamin D3 metabolites parathyroid hormone, (PTH), calcitonin (CT), prolactin (PRL) and growth hormone (GH) were measured every four weeks. This data pool was correlated with bone matrix turnover parameters, i.e. serum levels of alkaline phosphatase (ALP) and urinary hydroxyproline (u-HYP) excretion. After 12 weeks of treatment, 1,25(OH)2D3 significantly enhanced serum total and ionized Ca, urine Ca and urine P, and also diminished urine cAMP due to reduced renal function (creatinine clearance). However, 25(OH)D3 administration had no such impact. 24,25(OH)2D3 opposed the effect of 1,25(OH)2D3 after 12 weeks by significantly augmenting serum P and diminishing serum levels of total Ca and ionized Ca. Cross sectional group analyses showed that criculating levels of ALP were directly related with serum 1,25(OH)2D3 and inversely related to serum 24,25(OH)2D3 and CT. Total u-HYP and per cent non-dialysable HYP (ndHYP) were reciprocally and positively correlated with serum PRL, respectively. However, no such relations were observed with serum GH.It appears that rats with elevated circulating levels of 1,25(OH)2D3 exhibit increased bone resorption, while augmented 24,25(OH)2D3 is associated with the opposite. Apparently, high bone turnover (i.e. reduced total urinary HYP and enhanced ndHYP) is associated with high serum PRL.  相似文献   

15.
《Endocrine practice》2013,19(4):609-613
ObjectiveTo determine whether low levels of vitamin D-binding protein (DBP) are related to 25-hydroxyvitamin D (25[OH]D) deficiency in female patients with primary hyperparathyroidism (PHPT).MethodsTwenty-five female patients with PHPT (serum calcium level >10.2 mg/dL and intact parathyroid hormone (iPTH) level >66 pg/mL) and 25 healthy age- and body mass index-matched female control subjects were xaminod. Serum calcium and iPTH levels were determined by commercial laboratories. Levels of 25(OH)D and 1,25-dihydroxyvitamin D (1,25[OH]2D) were determined by radioimmunoassay, and DBP level was determined by enzyme-linked immunosorbent assay.ResultsSerum iPTH and calcium levels were higher in PHPT patients than control subjects (P<.001). Levels of 25(OH)D, albumin, and DBP were lower in the serum of PHPT patients than control subjects (P<.01). There were no significant differences in 1,25(OH)2D and free 25(OH) D levels between PHPT patients and control subjects. DBP level was inversely correlated with calcium (r = -0.47; P<.01) and iPTH (r = −0.31; P<.05) levels. The 25(OH)D level correlated positively with both DBP (r = 0.28; P <.05) and albumin (r = 0.44; P<.05) levels.ConclusionsBoth serum 25(OH)D and DBP levels were lower in female patients with PHPT compared with control subjects. We suggest that a low DBP level contributes to the low 25(OH)D level observed in female PHPT patients. The etiology of the decrease in DBP and its relationship to calcium, 25(OH)D, and PTH levels require further investigation. (Endocr Pract. 2013;19:609-613)  相似文献   

16.
Aluminum (Al) may cause vitamin D-resistant osteomalacia and depress the serum levels of immunoreactive parathyroid hormone (iPTH) in patients treated with maintenance dialysis and those on total parental nutrition (TPN). Both conditions have been associated with low serum levels of 1,25(OH)2-vitamin D (1,25(OH)2D). Al may inhibit PTH secretion in vitro; however, induction of hypocalcemia can enhance endogenous PTH secretion in Al-loaded dogs and TPN patients. Despite hypocalcemia and/or increased endogenous iPTH levels, Al-loaded TPN patients fail to show the expected rise in serum 1,25(OH)2D levels. Such observations suggest that Al may impair the renal response to PTH. We studied vitamin D-replete rats given Al or saline vehicle IP for 5 days. Al and control rats then received a saline infusion with an IV bolus of PTH 1-34. Urinary cyclic AMP and P excretion rose in Al and control rats by 1 hr post-PTH, without differences between the groups. Serum P and ionized Ca levels were not different between Al and control rats. In other Al and control rats, serum 1,25(OH)2D levels were measured after saline without PTH. Serum 1,25(OH)2D levels were higher in controls given PTH than in those without, but 1,25(OH)2D levels were not different between Al rats given PTH and those with none. Thus, aluminum does not affect cyclic AMP or P excretion but may impair 25(OH)D-1 alpha-hydroxylase activity in response to PTH.  相似文献   

17.
18.
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), regulates osteoblast proliferation and differentiation. Production of 1,25(OH)2D3 is catalysed by the enzyme 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1). Though highly expressed in the kidney, the CYP27B1 gene is also expressed in non-renal tissues including bone. It is hypothesised that local production of 1,25(OH)2D3 by osteoblasts plays an autocrine or paracrine role. The aim of this study was to investigate what factors regulate expression of the CYP27B1 gene in osteoblast cells. ROS 17/2.8 osteoblast cells were transiently transfected with plasmid constructs containing the 5′-flanking sequence of the human CYP27B1 gene fused to a luciferase reporter gene. Cells were treated with either parathyroid hormone (PTH), 1,25(OH)2D3, transforming growth factor-beta (TGF-β) or insulin-like growth factor-1 (IGF-1) and luciferase activity was measured 24 h later. The results showed that 1,25(OH)2D3 did not alter expression of the reporter construct, however treatment with PTH, IGF-1 and TGF-β decreased expression by 18, 53 and 58% respectively. The repressive action of TGF-β was isolated to the region between −531 and −305 bp. These data suggest that expression of the 5′-flanking region for the CYP27B1 gene in osteoblast cells may be regulated differently to that previously described in kidney cells.  相似文献   

19.
20.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is known to be involved in regulating the proliferation of parathyroid cells and PTH synthesis through reactions involving its nuclear receptor. We evaluated the effects of 1,25-(OH)2D3 and its hexafluorinated analog, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3), on parathyroid cells. The 1,25-(OH)2D3 and 26,27-F6-1,25-(OH)2D3 each inhibited [3H]thymidine incorporation and ornithine decarboxylase (ODC) activity, which is important in cell proliferation, in primary cultured bovine parathyroid cells. The inhibitory effect of 26,27-F6-1,25-(OH)2D3 on PTH secretion from parathyroid cells was significantly more potent than that of 1,25-(OH)2D 3 between 10−11 M and 10−8 M. Study of 26,27-F6-1,25-(OH)2D3 metabolism in parathyroid cells in vitro elucidated its slower degradation than that of 1,25-(OH)2D3. After 48 h of incubation with [1β-3H]26,27-F6-1,25-(OH)2D3, two HPLC peaks, one for [1β-3H]26,27-F6-1,25-(OH)2D3, and a second larger peak for [1β-3H]26,27-F6-1,23(S),25-(OH)3D3, were detected. No metabolites were detected after the same period of incubation with 1,25-(OH)2[26,27-3H]D3. We observed that 26,27-F6-1,23(S),25-(OH)3D3 was as potent as 1,25-(OH)2D3 in inhibiting the proliferation of parathyroid cells.Data suggest that the greater biological activity of 26,27-F6-1,25-(OH)2D3 is explained by its slower metabolisms and by the retention of the biological potency of 26,27-F6-1,25-(OH)2D3 even after 23(S)-hydroxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号