首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that the inhibition of chitin synthesis by benzoylphenyl ureas could be explained by their effect on the uptake of GlcNAc into chitin. Our test system consisted of organ cultures of wing imaginal discs from Plodia interpunctella. These wing discs synthesize chitin in response to 20-hydroxyecdysone or RH 5849, a non-steroidal ecdysteroid mimic. Two benzoylphenyl ureas, diflubenzuron and teflubenzuron, inhibited ecdysteroid-dependent chitin synthesis in the wing discs. However, although chitin synthesis was inhibited, there was no corresponding diminution of amino sugar uptake by the imaginal discs. In another experiment 20-hydroxyecdysone stimulated uptake of two sugars, 2-deoxy-D-glucose and 3-O-methyl-D-glucose, which are not synthesized into chitin. Transport of these non-metabolized sugars was unaffected by the inhibitors. In an additional test of the effects on precursor transport, the action of ecdysone (alpha-ecdysone) was examined. Ecdysone stimulated amino sugar uptake, but not chitin synthesis. Neither diflubenzuron nor teflubenzuron inhibited ecdysone-dependent precursor transport. Finally, we examined ecdysteroid-induced uptake of amino sugars by an imaginal disc derived cell line IAL-PID2. In this case, also, GlcNAc transport was not inhibited significantly by either diflubenzuron or teflubenzuron. From these observations we conclude that inhibition of uptake of amino sugars does not account for the ability of teflubenzuron and diflubenzuron to inhibit chitin synthesis in P. interpunctella wing discs.  相似文献   

2.
Summary Hemolymph ecdysteroid titers and in vitro prothoracic gland ecdysteroid synthesis have been examined in last-instar larval (5th instar) females of Lymantria dispar. Ecdysteroids were quantified by radioimmunoassay and characterized by co-elution with known standards of ecdysteroids on reverse-phase high-performance liquid chromatography. Analysis of hemolymph yielded ecdysone and 20-OH-ecdysone in ratios of 1:1 (day 6, shortly after attainment of maximum weight) and 1:28 (day 10, molting peak). Analysis of in vitro culture media from glands challenged with extracts of brains or retrocerebral complexes, or left unchallenged, revealed only immunoreactive material co-eluting with a known standard of ecdysone. Time-course studies of in vitro prothoracic gland ecdysone secretion demonstrated a major peak on day 10, 1–2 days prior to pupal ecdysis, and a small elevation on days 5–6. On days 5 and 6, 2.29±0.41 and 2.65±0.72 ng ecdysone per gland, respectively, were secreted in 6-h cultures. On day 10, 25.69±4.36 ng was secreted in 6-h culture. The ability of prothoracic glands of various ages to respond to brain extracts containing prothoracicotropic hormone activity was tested by determining an activation ratio for each day of the instar. The activation ratio was determined over a 90-min period by dividing the amount of ecdysone secreted by one member of a pair of prothoracic glands in the presence of brain extract by that of its contralateral control gland in Grace's medium. Prior to the addition of brain extract, the activity of the glands was allowed to subside to basal level for 180 min in Grace's medium. The activition ratio was highest on days 3–7 and fell throughout the remainder of the instar as the inherent ability of the prothoracic gland to maintain high levels of ecdysteroid synthesis in vitro in the absence of prothoracicotropic hormone increased. A two-phase in vitro assay for prothoracicotropic hormone was established using activition ratios. This assay showed saturable doseresponse kinetics for prothoracic gland ecdysone secretion and specificity to extracts prepared from brain or retrocerebral complexes. A comparable assay for prothoracicotropic hormone purification, based on net synthesis and requiring half the number of prothoracic glands was also established.Abbreviations A r activation ratio - HPLC high performance liquid chromatography - HPSEC high performance size-exclusion chromatography - PG prothoracic gland - PTTH prothoracicotropic hormone - RIA radioimmunoassay  相似文献   

3.
Although dibenzoylhydrazine-type non-steroidal ecdysone agonists such as methoxyfenozide (RH-2485) have an excellent performance record, the emergence of resistance could severely compromise the efficacy of these compounds in integrated pest management programs. To investigate possible mechanisms of resistance, cell lines derived from the polyphagous noctuid pest Spodoptera exigua (Se4 cells) were selected for continuous growth in the presence of high concentrations of 20-hydroxyecdysone (20E) or methoxyfenozide. Here we describe an analysis of ecdysteroid receptor signaling in the ecdysteroid-resistant Se4 cell lines. In contrast to other ecdysteroid-resistant cell lines described in literature, our data support the existence of a normal functioning ecdysteroid receptor complex in the resistant Se4 cell lines: (1) using a recombinant BmNPV baculovirus as a transduction tool, activation of an ecdysone-responsive luciferase cassette was demonstrated; (2) the early gene HR3 is constitutively expressed in the resistant cell lines that are grown in the presence of 20E or methoxyfenozide. Quantitative RT-PCR experiments indicated that expression levels of SeEcR mRNA were comparable among sensitive and resistant cell lines. Sequencing of PCR fragments also revealed the presence of SeEcR mRNA with a wild-type ligand-binding domain in resistant cells. Finally, a possible role for the gene FTZ-F1, whose expression correlates with the absence of circulating ecdysteroids during insect development, in the resistance mechanism was investigated. However, it was observed that FTZ-F1, in contrast to what is observed during insect development, is constitutively expressed in Se4 cells and that its expression is not regulated by the addition of ecdysteroid. It is proposed that the resistance mechanism in Se4 cells resides at the coupling between the conserved hierarchical cascade of early and early-late gene expression and the differentiation program in the Se4 cell line. The use of insect cell lines for the investigation of resistance against dibenzoylhydrazine ecdysone agonists and their relevance for uncovering resistance mechanisms in insects during pest control programs is discussed.  相似文献   

4.
Radioimmunoassay of in vitro culture medium from ovaries of Drosophila melanogaster indicates that detectable ovarian ecdysteroid synthesis begins between 6 and 12 h after eclosion and reaches a peak between 24 and 30 h, when animals are reared at 25°C, 12 h photophase. Analysis of 24 and 72 h medium by a combination of high-performance liquid chromatography and radioimmunoassay demonstrates three ecdysteroid regions, two comigrating with known standards of ecdysone and 20-hydroxyecdysone and a third highly polar region containing one or more unidentified radioimmunoassay-active ecdysteroids. In 72 h medium the polar region comprises the majority of radioimmunoassay-active material while in 24 h medium the majority is in the ecdysone region. Provision of a nutritionally deficient diet to females at adult eclosion prevents the normal increase in vitellogenic-stage follicles and ovarian ecdysteroid synthesis. Methoprene treatment of such females stimulates a transient burst of ovarian ecdysteroid synthesis and the production of near normal numbers of vitellogenic oöcytes by 24 h, although by 48 h the number of vitellogenic oöcytes is less than normal.  相似文献   

5.
The haemolymph ecdysteroid titre and in vitro capacities of prothoracic glands and corpora allata to synthesize ecdysone and juvenile hormone, respectively, during the last-larval instar of diapause-destined (short-day) and non-diapause-destined (long-day) Manduca sexta were investigated. In general, the ecdysteroid titres for both populations of larvae were the same and exhibited the two peaks characteristic of the haemolymph titre during this developmental stage in Manduca. The only difference in the titre occurred between day 7 plus 12 h and day 7 plus 20 h, when the short-day larval titre did not decrease as quickly as the long-day titre. The in vitro synthesis of ecdysone by prothoracic glands of short- and long-day larvae during the pharate pupal phase of the instar were also essentially the same. Activity fluctuated at times which would support the idea that ecdysone synthesis by the glands is a major contributing factor to the changes in the haemolymph ecdysteroid titre. There was one subtle difference in prothoracic gland activity between the two populations, occurring on day 7 plus 2 h. By day 7 plus 10 h, however, rates of ecdysone synthesis by the short- and long-day glands were comparable. This elevated activity of the short-day glands occurred just prior to the period the haemolymph ecdysteroid titre remained elevated in these larvae. The capacities of corpora allata to synthesize juvenile hormone I and III in vitro were not markedly different in long- and short-day last-instar larvae. At the time of prothoracicotropic hormone release in the early pupa, activity of corpora allata from short- and long-day reared animals was low and also essentially the same. There were a few differences in the levels of synthesis at isolated times, but they were not consistent for both homologues. Overall, there are no compelling differences in the fluctuations of ecdysteroids and juvenile hormones between diapause-destined and non-diapause-destined Manduca larvae. Since these hormones do not appear to play any obviously significant role in the induction of pupal diapause in this insect, the photoperiodic induction of diapause in Manduca appears to be a predominantly brain-centred phenomenon not involving endocrine effectors.  相似文献   

6.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   

7.
8.
The distribution and biosynthesis of ecdysone and 20-hydroxyecdysone (20-OH-ecdysone) was followed in sugar- and blood-fed female Aedes aegypti. In both sugar- and early blood-fed animals most of the ecdysteroid determined by radioimmunoassay was found outside the ovary. Twenty-four to 40 h after blood feeding, however, ecdysteroid was distributed between ovary and carcass in the ratio of 1:1.5. Ecdysteroid titer reached a plateau between 18 to 40 h after the blood meal and decreased thereafter. Analysis of the ecdysteroid titer using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) revealed that both 20-OH-ecdysone and ecdysone were synthesized after the blood meal. The ratio of 20-OH-ecdysone to ecdysone remained essentially constant and fluctuated in parallel throughout egg development. Chromatography of the early ecdysteroid peak (8 h after feeding) using TLC and HPLC indicated that although it cross-reacted with ecdysteroid antibodies, it did not have the same elution times as ecdysone and 20-OH-ecdysone and is, therefore, probably a precursor of these ecdysteroids. Injections of egg development neurosecretory hormone (EDNH) preparation purified to near homogeneity, into ligated abdomens, induced ecdysteroid synthesis only if the abdomens were first treated with methoprene (12.5 pg). Methoprene at this concentration did not stimulate ecdysteroid synthesis in these abdomens. When blood-fed females were treated with [4-14C] cholesterol and analyzed using TLC and HPLC procedures, both [14C]labeled ecdysone and [14C]labeled 20-OH-ecdysone were synthesized in the ratio of 1:1.5. This report is the first to show that both ecdysone and 20-OH-ecdysone are synthesized in vivo in female A. aegypti.  相似文献   

9.
We investigated here the ecdysteroid titers and the expression of six genes coding for known enzymes of the ecdysteroid biosynthesis in the testes of last instar larvae of the pest cotton leafworm, Spodoptera littoralis. We showed that the timing of the ecdysteroid profile was the same in testes and in hemolymph, with a small peak at day 2 and a large one at day 4 after ecdysis. Ecdysone and 20‐hydroxyecdysone (20E) were detected in both tissues. 20E was the major ecdysteroid in testes and in hemolymph from day 4. Interestingly, the gene expression of the steroidogenetic enzymes, Neverland, and the five cytochrome P450 enzymes encoded by the Halloween genes was confirmed in the testes, and varied during the instar. However, from the data obtained so far, we cannot conclude that the measured ecdysteroids in the testes result from the activity of the genes under study. Indeed, it is suggested that the ecdysone produced centrally in the prothoracic glands, could have been transformed into 20E in the testes, where Sl‐shade is well expressed.  相似文献   

10.
H Oberlander 《In vitro》1976,12(3):225-235
This paper reviews the effects of insect hormones on lepidopteran imaginal discs cultured in vitro. Beta-ecdysone showed that RNA and protein synthesis was required for evagination and cuticle deposition. In particular, studies with actinomycin D and cycloheximide (at nontoxic levels) showed that RNA and protein synthesis during the ecdysone-dependent period was essential for subsequent development. These findings support the hypothesis that stimulation of macromolecular synthesis is fundamental to the action of ecdysone on imaginal discs. The influence of beta-ecdysone on chitin synthesis was also examined. Beta-ecdysone stimulated uptake and incorporation of tritiated-glucosamine by cultured P.interpunctella wing discs. Addition of hexosamines to the culture medium had no influence on ecdysone-induced cuticle deposition, but inhibition of glucose-uptake by cytochalasin B prevented the formation of cuticle. The action of ecdysone on particular enzymes in the chitin pathway remains to be elucidated.timulated both evatination and cuticle deposition of wing discs of Plodia interpunctella(Hubner). However, evagination required a shorter exposure to ecdysone than did cuticle deposition. Cuticle deposition was obtained under the following conditions: (a) a 24-hour pulse of beta-ecdysone (0.5-5.0 mug/ml); (b) continuous treatment with 0.2 mug/ml beta-ecdysone; or (c) continuous treatment with 0.5 to 50.0 mug/ml beta-ecdysone in medium conditioned with larval fat body...  相似文献   

11.
Evidence that biosynthetic pathways critical to the formation of insect cuticle are retained in continuous insect cell lines opens new possibilities for research on the cuticle system. Recent findings indicate that chitin, molting hormone, and catecholamines are all produced by a vesicle cell line derived from embryos of the cockroach Blattella germanica. The chitin that is formed by this cell line is particulate and does not show the characteristic featherlike crystalline structure found in mature cuticle. The molting hormone is produced as ecdysone and is released into the culture medium. The addition of 20-hydroxyecdysone to the cultures increases the production of chitin fourfold. These responses are similar to those found in insect organ cultures.  相似文献   

12.
We previously reported preferential expression of genes for ecdysteroid signaling in the mushroom bodies of honeybee workers, suggesting a role of ecdysteroid signaling in regulating honeybee behaviors. The organs that produce ecdysteroids in worker honeybees, however, remain unknown. We show here that the expression of neverland and Non-molting glossy/shroud, which are involved in early steps of ecdysteroid synthesis, was enhanced in the ovary, while the expression of CYP306A1 and CYP302A1, which are involved in later steps of ecdysone synthesis, was enhanced in the brain, and the expression of CYP314A1, which is involved in converting ecdysone into active 20-hydroxyecdysone (20E), was enhanced in the brain, fat body, and ovary. In in vitro organ culture, a significant amount of ecdysteroids was detected in the culture medium of the brain, fat body, and hypopharyngeal glands. The ecdysteroids detected in the culture medium of the fat body were identified as ecdysone and 20E. These findings suggest that, in worker honeybees, cholesterol is converted into intermediate ecdysteroids in the ovary, whereas ecdysone is synthesized and secreted mainly by the brain and converted into 20E in the brain and fat body.  相似文献   

13.
Summary Five continuous cell lines were initiated from embryonic tissue of the cotton boll weevilAnthonomus grandis Boheman in a commercially available, serum-free medium (Excell 401) and have undergone in excess of 60 passages. Isoenzyme analysis confirmed that the lines originated from boll weevil tissue. Four of the lines grew as single attached cells of either epithelioid or fibroblastoid morphology. The fifth line, BRL-AG-2, grew primarily as cell aggregates and was found to release ecdysteroids (primarily ecdysone) into the culture medium. Evidence was also obtained suggesting that line BRL-AG-2 synthesizes chitin. Three lines, BRL-AG-1, BRL-AG-3A, and BRL-AG-3C, could be induced to produce an antibacterial factor(s) which was released into the culture medium.  相似文献   

14.
《Insect Biochemistry》1985,15(1):65-72
The ecdysteroid composition of Schistocerca gregaria eggs at different stages of development was determined by analysis of ecdysteroids labelled maternally from [4-14C]cholesterol. At all stages studied, highly polar ecdysteroid derivatives predominated, but changes in their composition occurred between day 10 of development and hatching (day 17). During this period, polar conjugates of ecdysone-3-acetate and 3-epi-2-deoxyecdysone appeared together with ecdysteroid acids. At day 17, the polar conjugate of [14C]ecdysone-3-acetate represented 36% of the total conjugated steroids. Separate in vivo studies on the metabolism of [14C]ecdysteroid conjugates isolated from newly-laid eggs and consisting primarily of the 22-phosphates of ecdysone, 2-deoxyecdysone and 20-hydroxyecdysone showed that ecdysteroid phosphates could be hydrolysed to give primarily free ecdysone during embryogenesis. Developing eggs can metabolize [3H]ecdysone to ecdysonoic acid, 3-acetylecdysone-2-phosphate and to a lesser extent ecdysone-22-phosphate and 20-hydroxyecdysonoic acid. A polar conjugate of 20-hydroxyecdysone-3-acetate, possibly the 2-phosphate derivative, was detected as a minor metabolite of ecdysone. A scheme of the proposed pathways involved in the metabolism of ecdysteroid-22-phosphates in the developing eggs of S. gregaria is presented.  相似文献   

15.
Ecdysteroid levels were determined by radioimmunoassay, using an antiserum with higher affinity for ecdysterone than for ecdysone. In both sexes, the ecdysteroid level remains low until day 3 after eclosion. When fed liver on day 3, the ecdysteroid titre declines within 4 h in both sexes, stays low in males, but increases again after 12 h in females. The content in non-liver-fed animals, specially females, was significantly higher than if given liver. The level in liver-fed whole animals increased during oogenesis from the onset of follicular growth until the 4B—4C stage, and decreased thereafter.

During embryogenesis, a new high level was found in females, due to the developing embryos which contained a high titre. In isolated ovaries, the ecdysteroid content increased during follicular growth, with a steep increase during the last phase (4C—M and from M to uterine eggs). The ecdysteroid content in hemolymph of 7-day-old females, fed liver or not, was around 10 ng/ml, but in hemolymph of males of the same age no activity was found.

Ovariectomized females contained 12.4 ng/g ecdysteroid. The level during metamorphosis was also determined, mainly to be able to compare our radioimmunoassay results with known bioassay data. Our results support the statement that the ovary cannot be the only site of synthesis of molting hormone in adult S. buttata.  相似文献   

16.
The response of Drosophila imaginal disc cell lines to ecdysteroids   总被引:1,自引:0,他引:1  
Summary We have investigated the action of the moulting hormone 20-hydroxy ecdysone (20-HOE) on our leg and wing imaginal disc cell lines. At the morphological level, cells stop dividing and there is some cell death. The remaining cells elongate and aggregate, often producing long processes which form connections between different aggregates. 20-HOE acts within the first one or two days of a passage, at an optimum concentration of 10 ng/ml, this being about 1/100 of the optimum for ecdysone. One cloned wing cell line, C9, has been found to be relatively insensitive to the action of 20-HOE. We have been able to select for resistance to 20-HOE by growing cells in gradually increasing concentrations of hormone followed by passages in hormone-free medium. This has enabled us to isolate a wing cell line C1.8R from its parent cloned line C1.8+. This shows no response to 20-HOE, and cell growth continues even at hormone concentrations as high as 150 ng/ml. We have measured chitin synthesis by the incorporation of radioactive glucosamine into a cell fraction resistant to extensive alkali hydrolysis. The residue was incubated with chitinase, which resulted in a 50% reduction in labelled product. Treatment with 10 ng/ml of 20-HOE dramatically increased chitin synthesis in line C1.8+, but had no effect in the line C1.8R, selected for resistance to hormone. Correspondence to: M.J. Milner  相似文献   

17.
Juvenile hormone or ZR512 applied topically to day-5, fifth-instar, neck-ligated Manduca sexta larvae results in the acceleration of pharate pupal development when compared to neck-ligated, untreated larvae. This occurs as a result of an increase in the haemolymph ecdysteroid titre. Juvenile hormone, therefore, appears to stimulate ecdysone synthesis by the prothoracic glands of these animals, but not directly as shown by in vitro analysis. When ecdysone synthesis by the prothoracic glands of these ZR512- or juvenile hormone-treated animals was analyzed in vitro, increased gland activity was demonstrated but this did not occur until at least 2 days after treatment. This time lag in response supports the concept of an indirect stimulation of the prothoracic glands. Incubation of fat body from these ZR512- or juvenile hormone-treated, neck-ligated, larvae in 19AB culture medium revealed that the resulting pre-conditioned medium was capable of stimulating prothoracic glands in vitro up to 9-fold in a dose-dependent manner. A developmental profile was generated of the amount of this stimulatory factor released into the medium by fat body of untreated larvae representing each day of the last instar, and revealed that maximal release occurred with fat body from day-9 animals. The alterations in the amount of factor release by the fat body during larval-pupal development roughly correlated with the juvenile hormone titre and suggested a possible role for this factor in the regulation of the ecdysteroid titre. In contrast to the prothoracicotropic hormone, the fat body stimulatory factor is heat labile and has an apparent mol. wt in the 30,000 Dalton range. These data, particularly the kinetics of prothoracic gland stimulation, suggest that the factor may be a protein transporting a substrate for ecdysone biosynthesis to the prothoracic glands.  相似文献   

18.
The ecdysteroid hormones, mainly 20-hydroxyecdysone (20E), play a pivotal role in insect development by controlling gene expression involved in molting and metamorphosis. In the model insectManduca sexta the production of ecdysteroids by the prothoracic gland is acutely controlled by a brain neurohormone, prothoracicotropic hormone (PTTH). PTTH initiates a cascade of events that progresses from the influx of Ca2+ and cAMP generation through phosphorylation of the ribosomal protein S6 and S6-dependent protein synthesis, and concludes with an increase in the synthesis and export of ecdysteroids from the gland. Recent studies indicate that S6 phosphorylation probably controls the steroidogenic effect of PTTH by gating the translation of selected mRNAs whose protein products are required for increased ecdysteroid synthesis. Inhibition of S6 phosphorylation prevents an increase in PTTH-stimulated protein synthesis and subsequent ecdysteroid synthesis. Two of the proteins whose translations are specifically stimulated by PTTH have been identified, one being a β tubulin and the other a heat shock protein 70 family member. Current data suggest that these two proteins could be involved in supporting microtubule-dependent protein synthesis and ecdysone receptor assembly and/or function. Recent data also indicate that the 20E produced by the prothoracic gland feeds back upon the gland by increasing expression and phosphorylation of a specific USP isoform that is a constituent of the functional ecdysone receptor. Changes in the concentration and composition of the ecdysone receptor complex of the prothoracic gland could modulate the gland's potential for ecdysteroid synthesis (e.g. feedback inhibition) by controlling the levels of enzymes or other proteins in the ecdysteroid biosynthetic pathway.  相似文献   

19.
甲壳动物的蜕皮过程被认为是由位于眼柄的X器-窦腺复合体(XO-SG)分泌蜕皮抑制激素(MIH)通过调节Y器(YO)合成蜕皮激素而调控的。通过实时荧光定量PCR(qRT-PCR)发现MIH基因在三疣梭子蟹眼柄X器-窦腺复合体中表达最强。采用qRT-PCR分析了MIH基因在三疣梭子蟹蜕皮周期中的表达变化, 结果表明; A期为(0.42±0.08)倍, B期为(1.09±0.09)倍, C期为(1.35±0.16)倍, D0亚期为(1.00±0.10)倍, D1亚期(0.78±0.07)倍, D2亚期为(0.27±0.08)倍, D3/4亚期为(0.20±0.04)倍。采用高效液相色谱-电喷雾串联质谱(LC-MS/MS)法完成了三疣梭子蟹蜕皮周期中蜕皮激素(20E)浓度变化的测定。A/B期蜕皮激素的浓度较低, 低于仪器检测限0.33 pg, C期为(1.666±0.762) ng/mL, D0亚期为(4.047±1.5133) ng/mL, D1亚期为(6.756±4.928) ng/mL, D2亚期为(8.609±3.827) ng/mL, D3亚期为(19.534±4.799) ng/mL, D4亚期为11.616 ng/mL。在三疣梭子蟹蜕皮周期中, MIH基因表达量与血淋巴中蜕皮激素浓度呈现一定拮抗性, 揭示MIH抑制Y器合成蜕皮激素而调控着三疣梭子蟹蜕皮的发生和进行。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号