首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The validity of Pryor's widely accepted quinone tanning hypothesis for the sclerotization of insect cuticle was examined using an in vitro model system. Quinones generated in situ by the oxidation of catechols with mushroom tyrosinase and molecular oxygen readily reacted with test proteins such as lysozyme, ribonuclease and cytochrome-c, producing dimers, trimers, and higher oligomers. With the exception of 3,4-dihydroxyphenylalanine, dopamine, and norepinephrine, most other catechols tested participated in protein polymerization. The inability of these three compounds to support oligomerization of test protein was attributed to their high rate of intramolecular cyclization reaction. Radioactive incorporation studies reveal the formation of catechol-protomer adducts, as well as aryl-protein crosslinks in the reaction mixture. The above results strongly support the quinone tanning hypothesis. Based on these findings, the mechanism of cuticular sclerotization is discussed.  相似文献   

2.
The electron spin resonance-spin stabilization technique has been applied in an enzymatic system. This technique, which generates radicals in high steady-state concentration under static conditions, involves the use of limited quantities of enzyme and substrate while allowing facile spectral interpretation. In this work o-semiquinone intermediates produced during peroxidase-catalyzed oxidation of catechols and catecholamines have been detected as their metal complexes with Zn2+. No significant effect on the peroxidase activity was found for the concentrations of Zn2+ ions employed.  相似文献   

3.
Sedimentation studies and [3H]colchicine-binding assays have demonstrated a relationship between the cytoplasmic cohesiveness cycles and the changes in tubulin organization in Paracentrotus lividus eggs activated by 2.5 mM procaine. The same amount of tubulin (20–25 % of the total egg tubulin) is involved in these cyclic process and appears to undergo polymerization and depolymerization cycles. Electron microscopy studies reveal that the microtubules formed during these cytoplasmic cohesiveness cycles are under a particulate form which is sedimentable at low speed. Activation experiments carried out in the presence of cytochalasin B (CB) show that the increase in the cytoplasmic cohesiveness is highly reduced while tubulin polymerization and depolymerization cycles and pronuclear centration are not affected. Although tubulin or actin polymerization can be independently triggered in procaine-activated eggs, the increase in cytoplasmic cohesiveness requires the polymerization of both proteins. However, the cytoplasmic cohesiveness cycles appear to be regulated by tubulin polymerization and depolymerization cycles.  相似文献   

4.
The selenoenzyme glutathione peroxidase cannot account for all the physiological effects of selenium in rat liver. Therefore, a study was carried out with the ultimate aim of identifying selenoproteins other than glutathione peroxidase. The incorporation of 75Se, given as 75SeO32?, into centrifugally separated fractions of selenium-deficient and control rat livers was determined. In selenium-deficient liver much less 75Se was incorporated into the 105,000g supernatant fraction than in controls, so this fraction was studied further by gel filtration, ion-exchange, and hydroxylapatite chromatography. Selenoglutathione peroxidase and another selenoprotein, called 75Se-P, were separated and identified. Both these selenoproteins were also found in plasma. Selenium deficiency had opposite effects on incorporation of 75Se by these proteins. It decreased 75Se incorporation by glutathione peroxidase at 3 and 72 h after 75Se injection but increased 75Se incorporation by 75Se-P. This suggests that 75Se-P competes for available selenium better than does glutathione peroxidase when the element is in short supply. Apparent molecular weights of 75Se-P from liver and plasma determined by gel filtration were, respectively, 83,000 and 79,000, which indicate proteins smaller than glutathione peroxidase. Cycloheximide pretreatment of the rat blocked 75Se incorporation into plasma 75Se-P. These experiments establish the existence of a selenoprotein, 75Se-P, in rat liver and plasma which is chromatographically distinct from glutathione peroxidase and which incorporates 75Se differently from glutathione peroxidase. 75Se-P may account for some of the physiological effects of selenium.  相似文献   

5.
Apocynin (APO), curcumin (CUR) and vanillin (VAN) are o-methyl catechols widely studied due their antioxidant and antitumour properties. The effect of treatment with these o-methyl catechols on tamoxifen (TAM)-induced cytotoxicity in normal and tumour cells was studied. The cytotoxicity of TAM on red blood cells (RBC) was performed by haemoglobin or K+release and on polymorphonuclear leukocytes (PMNs) by trypan blue dye exclusion method. Cytotoxic activity was assessed in human chronic myeloid leukemia (K562) cell line by (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide). According the release of haemoglobin and K+, the CUR showed a decrease in TAM cytotoxicity on RBC; however, in PMN, APO, CUR and VAN showed increased of these cells viability. VAN presented the highest cytotoxicity on K562 cells, followed by APO and CUR. These results point the potential therapeutic value of these o-methyl catechols with TAM, particularly of CUR, which potentiates the cytotoxic effects of TAM on K562 cells and also decreases TAM-associated cytotoxicity on RBC and PMN.  相似文献   

6.
L-DNA is the mirror-image form of natural D-DNA. We demonstrate that one left-handed G-rich sequence can form an L-DNA intramolecular G-quadruplex. Further investigation revealed that a DNAzyme formed by an L-nucleotide G-quadruplex exhibited peroxidase catalytic efficiency. The enhancement of the color change of the oxygenation product ABTS?? caused by L-nucleotide G-quadruplex formation could be clearly observed with naked eyes. This research provides a new concept for the application of the L-DNA peroxidase DNAzyme complex in nuclease-containing biological systems.  相似文献   

7.
Eosinophil peroxidase (EPO) is an abundant heme protein in eosinophils that catalyzes the formation of cytotoxic oxidants implicated in asthma, allergic inflammatory disorders, and cancer. It is known that some proteins with peroxidase activity (horseradish peroxidase and prostaglandin hydroperoxidase) can catalyze oxidation of bisulfite (hydrated sulfur dioxide), leading to the formation of sulfur trioxide anion radical (·SO3). This free radical further reacts with oxygen to form peroxymonosulfate anion radical (O3SOO·) and the very reactive sulfate anion radical (SO4˙̄), which is nearly as strong an oxidant as the hydroxyl radical. However, the ability of EPO to generate reactive sulfur radicals has not yet been reported. Here we demonstrate that eosinophil peroxidase/H2O2 is able to oxidize bisulfite, ultimately forming the sulfate anion radical (SO4˙̄), and that these reactive intermediates can oxidize target proteins to protein radicals, thereby initiating protein oxidation. We used immuno-spin trapping and confocal microscopy to study protein oxidation by EPO/H2O2 in the presence of bisulfite in a pure enzymatic system and in human promyelocytic leukemia HL-60 clone 15 cells, maturated to eosinophils. Polyclonal antiserum raised against the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) detected the presence of DMPO covalently attached to the proteins resulting from the DMPO trapping of protein free radicals. We found that sulfite oxidation mediated by EPO/H2O2 induced the formation of radical-derived DMPO spin-trapped human serum albumin and, to a lesser extent, of DMPO-EPO. These studies suggest that EPO-dependent oxidative damage may play a role in tissue injury in bisulfite-exacerbated eosinophilic inflammatory disorders.  相似文献   

8.
A manganese peroxidase preparation from the white-rot fungus Nematoloma frowardii was found to be capable of releasing up to 17% 14CO2 from 14C-labelled synthetic humic substances. The latter were prepared from [U-14C]catechol by spontaneous oxidative polymerization or laccase-catalysed polymerization. The ex-tent of humic substance mineralization was considerably enhanced in the presence of the thiol mediator glutathione (up to 50%). Besides the evolution of 14CO2, the treatment of humic substances with Mn peroxidase resulted in the formation of lower-molecular-mass products. Analysis of residual radioactivity by gel-permeation chromatography demonstrated that the predominant molecular masses of the initial humic substances ranged between 2 kDa and 6 kDa; after treatment with Mn peroxidase, they were reduced to 0.5–2 kDa. The extracellular depolymerization and mineralization of humic substances by the Mn peroxidase system may play an important role in humus turnover of habitats that are rich in basidiomycetous fungi. Received: 25 September 1997 / Received revision: 12 January 1998 / Accepted: 13 January 1998  相似文献   

9.
Ethylene enhanced the senescence of cucumber (Cucumis sativus L. cv `Poinsett 76') cotyledons. The effect of 10 microliters per liter ethylene was inhibited by 1 millimolar silver thiosulfate, an inhibitor of ethylene action. An increase in proteins with molecular weights of 33 to 30 kilodaltons and lower molecular weights (25, 23, 20, 16, 12, and 10 kilodaltons) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels after ethylene enhanced senescence. The measurement of DNase and RNase activity in gels indicated that these new proteins were not nucleases. Two proteins from ethylene-treated cotyledons were purified on the basis of their association with a red chromaphore and subsequently were identified as peroxidases. The molecular weights and isoelectric points (pI) of two of these peroxidases were 33 kilodaltons (cationic, pI = 8.9) and 60 kilodaltons (anionic, pI = 4.0). The observation that [35S]Na2SO4 was incorporated into these proteins during ethylene-enhanced senescence suggests that these peroxidases represent newly synthesized proteins. Antibodies to the 33-kilodalton peroxidase precipitated two in vitro translation products from RNA isolated from ethylene-treated but not from control cucumber seedlings. This indicates that the increase in 33-kilodalton peroxidase activity represents de novo protein synthesis. Both forms of peroxidase degraded chlorophyll in vitro, which is consistent with the hypothesis that peroxidases have catabolic or scavenging functions in senescent tissues.  相似文献   

10.
An investigation of the cellular response of the freshwater microalga Chlorella zofingiensis to exogenous selenium showed that Chlorella cells can tolerate sodium selenite up to a concentration of 100 mg l−1. Cells grown in such a selenium-supplemented medium accumulated boiling-stable proteins in a concentration-dependant manner. Western blot analysis revealed that three of these boiling-stable proteins cross-reacted with anti-dehydrin antibody. Selenium was also found to exert an effect on antioxidative enzymes: superoxide dismutase (Fe-SOD and Mn-SOD isoforms) accumulated in response to selenium stress of 100 mg l−1 sodium selenite, as did a new form of selenium-dependent glutathione peroxidase. Upon transfer of the cells to a selenium-free medium, the boiling-stable proteins, the superoxide dismutase isoforms and the selenium-dependent glutathione peroxidase were all down regulated. The accumulation of boiling-stable proteins and the increased activities of the antioxidant enzymes in selenium-treated Chlorella cells suggest that these compounds are probably involved in the mechanism(s) of selenium tolerance of this alga.  相似文献   

11.
Peroxidases are ubiquitous enzymes that play an important role in living organisms. Current spectrophotometrically based peroxidase assay methods are based on the production of chromophoric substances at the end of the enzymatic reaction. The ambiguity regarding the formation and identity of the final chromophoric product and its possible reactions with other molecules have raised concerns about the accuracy of these methods. This can be of serious concern in inhibition studies. A novel spectrophotometric assay for peroxidase, based on direct measurement of a soluble aniline diazo substrate, is introduced. In addition to the routine assays, this method can be used in comprehensive kinetics studies. 4-[(4-Sulfophenyl)azo]aniline (λmax?=?390?nm, ??=?32 880 M?1 cm?1 at pH 4.5 to 9) was introduced for routine assay of peroxidase. This compound is commercially available and is indexed as a food dye. Using this method, a detection limit of 0.05?nmol mL?1 was achieved for peroxidase.  相似文献   

12.
Catechols can undergo a variety of chemical reactions. In this review, we particularly focus on complex formations and the redox chemistry of catechols, which play an inportant role in the toxicity of catechols. In the presence of heavy metals, such as iron or copper, stable complexes can be formed. In the presence of oxidizing agents, catechols can be oxidized to semiquinone radicals and in a next step to o‐benzoquinones. Heavy metals may catalyse redox reactions in which catechols are involved. Further chemical properties like the acidity constant and the lipophilicity of different catechols are shortly described as well. As a consequence of the chemical properties and the chemical reactions of catechols, many different reactions can occur with biomolecules such as DNA, proteins and membranes, ultimately leading to non‐repairable damage. Reactions with nucleic acids such as adduct formation and strand breaks are discussed among others. Interactions with proteins causing protein and enzyme inactivation are described. The membrane–catechol interactions discussed here are lipid peroxidation and uncoupling. The deleterious effect of the interactions between catechols and the different biomolecules is discussed in the context of the observed toxicities, caused by catechols.  相似文献   

13.
The dityrosine bond (DT) is an oxidative covalent cross-link between two tyrosines. DT cross-linking is increasingly identified as a marker of oxidative stress, aging and disease, and has been detected in diverse pathologies. While DT cross- linked proteins have been documented, the consequences of the DT link on the structure and function of the so modified proteins are yet to be understood. With this in view, we have studied the properties of intermolecular DT-dimers of four proteins of diverse functions, namely the enzyme ribonuclease A, the signal protein calmodulin, and the eye lens proteins alpha- and gamma B-crystallins. We find that DT is formed through radical reactions and type I photosensitization (including OH, O2 and OONO), but not by 1O2 and NO2 (which modify his, trp and met more readily). Tyr residues on the surface of the protein make DT bonds (intra- and intermolecular) most readily and preferentially. The conformation of each of these DT-dimers, monitored by spectroscopy, is seen not to be significantly altered in comparison to that of the parent monomer, but the structural stability of the DT cross-linked molecule is lower than that of the parent native monomer. The DT-dimer is denatured at a lower temperature, and at lower concentrations of urea or guanidinium chloride. The effect of DT-cross-linking on the biological activities of these proteins was next studied. The enzymatic activity of the DT-dimer of ribonuclease A is not lost but lowered. DT-dimerization of lens alpha-crystallin did not significantly affect the chaperone-like ability; it inhibits the self-aggregation and precipitation of target proteins just as well as the parent, unmodified alpha-crystallin does. DT-dimerization of gamma B-crystallin is however seen to lead to more ready aggregation and precipitation, a point of interest in cataract. In the case of calmodulin, we could generate both intermolecular and intramolecular DT cross-linking, and study both the DT-dimer and DT-monomer. The DT-dimer binds smooth muscle light chain kinase and also Ca2+, but less efficiently and over a broad concentration range than the native monomer. The intramolecular DT-monomer is weaker in all these respects, presumably since it is structurally more constrained. These results suggest that DT cross-linking of globular proteins weakens their structural stability and compromises (though does not abolish) their biological activity, both of which are pathologically relevant. The intramolecular DT cross-link would appear to lead to more severe structural and functional consequences.  相似文献   

14.
Acrylamide was polymerized to give polyacrylamide using manganese peroxidase (MnP) produced by the basidiomycete Bjerkandera adusta. The molecular weight of the polymer synthesized by MnP was 155000, higher than those obtained with other reaction systems using horseradish peroxidase and a redox initiator. The 13C-NMR spectrum showed that polyacrylamide was atactic. Electron spin resonance analysis revealed that 2,4-pentanedione added as an initiator was first oxidized to generate a carbon-centered radical, which initiated radical additive polymerization of acrylamide.  相似文献   

15.
The high molecular weight glutenin subunits are considered one of the most important components of wheat (Triticum aestivum) gluten, but their structure and interactions with other gluten proteins are still unknown. Understanding the role of these proteins in gluten formation may be aided by analyses of the conformation and interactions of individual wild-type and modified subunits expressed in heterologous systems. In the present report, the bacterium Escherichia coli was used to synthesize four naturally occurring X- and Y-type wheat high molecular weight glutenin subunits of the Glu-1D locus, as well as four bipartite chimeras of these proteins. Naturally occurring subunits synthesized in the bacteria exhibited sodium dodecyl sulfate-polyacrylamide gel electrophoresis migration properties identical to those of high molecular weight glutenin subunits extracted from wheat grains. Wild-type and chimeric subunits migrated in sodium dodecyl sulfate gels differently than expected based on their molecular weights due to conformational properties of their N- and C-terminal regions. Results from cycles of reductive cleavage and oxidative reformation were consistent with the formation of both inter- and intramolecular disulfide bonds in patterns and proportions that differed among specific high molecular weight glutenin species. Comparison of the chimeric and wild-type proteins indicated that the two C-terminal cysteines of the Y-type subunits are linked by intramolecular disulfide bonds, suggesting that the role of these cysteines in glutenin polymerization may be limited.  相似文献   

16.
The present study was undertaken to test the influence of exogenously applied traumatic acid (TA) upon the activity of several antioxidant enzymes as well as lipid and protein peroxidation in green algae Chlorella vulgaris. Treatment with TA in concentration range of 10−6–10−5 M resulted in an increase of antioxidant enzyme (sodium dismutase, catalase, ascorbate peroxidase, NADH peroxidase, glutathione reductase) activity. Moreover, TA suppressed lipid peroxidation and oxidative destruction of proteins belonging to the SH groups. This data suggest that TA plays an important role in the metabolism of C. vulgaris and probably in its high ability to adapt to various environmental stress factors.  相似文献   

17.
Peroxidases are enzymes that catalyze the oxidative cross-linking and polymerization of certain organic compounds by hydrogen peroxide and other organic peroxides. This study demonstrates that peroxidases are present in dew (droplets formed as the result of guttation) collected from Bermuda grass hybrids 419 and Tifway 2 [Cynodon dactylon (L.) × Cynodon transvaalensis Davy], which are warm-season C4 grasses, and Kentucky bluegrass (Poa pratensis L.), which is a cool-season C3 grass. Peroxidase activity [quantified with horseradish peroxidase (HRP) (activity 152 purpurogallin units/mg) as standard] in guttational fluids collected from grasses during early morning was in the 80 to 120 µg/L range. Isoelectric focusing was used to determine isoelectric points (pI) of the isozymes present in the Bermuda grass dew following dialysis and lyophilization of the collected dew. The pI values ranged from 4.3 to 8.3 with 14 isozymes being detected using guaiacol and hydrogen peroxide as substrates. Peroxidases also were extracted from soil supporting the growth of Bermuda grass. Peroxidases in these soils were most abundant in the top 5 cm layer (activity was in the 6.8 to 16 purpurogallin units/g range). Stability and activity of these peroxidases in the presence of fulvic and humic acids were evaluated. Compared to controls with no added humic substances, peroxidase activity was inhibited by a soil fulvic acid and prolonged by a humic acid. Field measurements indicated that peroxidase activity did not greatly decrease during the winter when the grass was dormant, indicating that the peroxidases released into the soil remain active for a considerable time. Based on results in these studies and previously determined dry and wet deposition of atmospheric peroxides, we estimate that peroxidase-catalyzed reactions in areas planted in these grasses may convert about 8 g C m-2 yr-1 of labile soil organic compounds to more persistent oligomers and polymers.  相似文献   

18.
Studies of adenylate cyclase activity in rat liver, heart and fat cell microsomal preparations and in turkey and rat erythrocyte ghosts indicate that β-adrenergic receptors exhibit very strict stereospecificity for (?)-catecholamines. (+)-Isomers of active catecholamines and inactive catechol compounds do not inhibit the β-adrenergic-mediated stimulation of adenylate cyclase and thus do not interact with specific receptors. However, very high concentrations (above 10?4 M) of (?)- and (+)-isomers, as well as of biologically inactive non-catecholamine catechols (e.g., pyrocatechol, dihydroxymandelic acid), inhibit in a nonspecific manner the basal, hormone (catecholamine, glucagon)- and NaF-stimulated adenylate cyclase activity. Studies with propranolol suggest that the low activity (0.1 to 1%) of (+)-isomers of norepinephrine can be explained by contamination with the (?)-isomer. The activity of soterenol, a potent non-catechol β-adrenergic agonist, is uninfluenced by (+)-catecholamines or catechols. It is concluded that the binding of 3H-labeled catecholamines to a variety of cells, microsomes and membranes as described in various previous studies cannot represent specific receptor interactions. Binding to receptors must demonstrate strict stereospecificity and must not be affected by unrelated catechol substances.  相似文献   

19.
The effects of adding hydrogen peroxide and peroxidase to wheat-flour dough on dityrosine formation and mixing characteristics were investigated. Dityrosine in wheat-flour dough was identified by HPLC with a fluorescence detector and by LC/MS/MS. Formation of dityrosine increased with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase, to wheat-flour dough, while the addition of peroxidase had no effect on the amount of dityrosine formed. The mixing curve obtained by a doughgraph changed with the addition of hydrogen peroxide, and hydrogen peroxide plus peroxidase; the peak time was significantly delayed and the dough development time was extended. We found that dityrosine cross-links in wheat-flour dough increased with the addition of peroxidase plus hydrogen peroxide. It is thought that these cross-links can lead to polymerization of the proteins in wheat-flour dough.  相似文献   

20.
ABSTRACT:?

The cationic peanut peroxidase has been studied in detail, not only with regard to its peptide structure, but also to the sites and role of the three moieties linked to it. Peanut peroxidase lends itself well to a close examination as a potential example for other plant peroxidase studies. It was the first plant peroxidase for which a 3-D structure was derived from crystals, with the glycans intact. Subsequent analysis of peroxidases structures from other plants have not shown great differences to that of the peanut peroxidase. As the period of proteomics follows on the era of genomics, the study of glycans has been brought back into focus. With the potential use of peroxidase as a polymerization agent for industry, there are some aspects of the overall structure that should be kept in mind for successful use of this enzyme. A variety of techniques are now available to assay for these structures/ moieties and their roles. Peanut peroxidase data are reviewed in that light, as well as defining some true terms for isozymes. Because a high return of the enzyme in a pure form has been obtained from cultured cells in suspension culture, a brief review of this is also offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号