首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We cultured eight-cell mouse embryos to blastocyst stage, divided them into three groups according to the time of blastocoel formation, and transferred them separately into recipients. The proportion of live young from the fast-developing embryos was slightly high (49%) but not significantly different from those of other embryos (38% and 39%). However, the sex ratio of live young from the fast- and slow-developing embryos was significantly shifted toward the male (71%) and to the female (80%), respectively.  相似文献   

2.
蜜蜂性别决定与性比调控机理研究   总被引:2,自引:1,他引:2  
叙述了 4个主要蜜蜂性别决定机理的假说 :即性位点假说、基因平衡假说、蜜蜂性别决定综合假说和性基因数量决定假说。然后就蜜蜂性比由蜂王操纵 ,或是由工蜂操纵进行了论述 ,并对蜜蜂性比调控机理研究提出了一些建议  相似文献   

3.
Gonadal protein patterns of the mouse were studied during fetal development by two-dimensional gel electrophoresis. Fetal mice at days 8.5, 10.5, 12.5, and 14.5 post-coitum were analyzed for male or female specific proteins. Although no sex specific proteins were found, several proteins were found which were expressed in significantly different amounts in the two sexes at about the time of gonadal differentiation. Hence, quantitative differences, rather than qualitative ones, could be related to the initiation of testis or ovary development.  相似文献   

4.
Ophryotrocha labronica is a gonochoristic polychaete worm whose sex determining mechanism and sex ratio control are supposed to be polygenic. From a lab population, whose sex ratio (i.e., proportion of males) was 0.5, the estimate of sex ratio heritability by offspring-father regression was 0.54 ± 0.15 and by offspring-mother regression was not significantly different from 0. Estimate of sex ratio repeatability between successive broods of a pair was 0.64 ± 0.33. Since female parents do not contribute in any way to the variability of sex ratio, sex ratio variation seems to be largely a paternal character. On the basis of these estimates we advance the hypothesis that in this species sex is determined by a multilocus genetic system, allowing the combined effects of a female major sex gene (which could give rise to a form of female heterogamety) and masculinizing modifiers. The hypothesis that the male sex has the least canalised sexual differentiation is supported by the observation that some old males developed oocytes.  相似文献   

5.
A model for environmental sex reversal in fish   总被引:3,自引:0,他引:3  
A mathematical model is presented which combines genetic XX-female/XY-male sex determination with environmental pressure for phenotypic sex reversal. This may occur when fishes are exposed to endocrine disrupters, specifically masculinization by exposure to androgens and feminization by exposure to estrogens. A generic model is derived for the sex ratio in successive generations and three special cases, with chronic and constant pressure to sex reverse, are discussed in detail. These show that, with extreme environmental pressure to masculinize, the male genotype is at risk of dying out but with less extreme pressure, masculinization will not be detectable since the proportion of phenotypic males becomes one-half. With feminization at any pressure to sex reverse, the male and female genotypes will be maintained in a stable sex ratio in which the proportion of genotypic males exceeds one-half and is close to one-half if YY offspring (eggs) are not viable. In converse, the model is also applicable to the genetic ZZ-male/ZW-female system of sex determination in fish. At present suitable data are not available with which to validate the model, but proposals are made for relevant experimental studies.  相似文献   

6.
The great diversity of sex determination mechanisms in animals and plants ranges from genetic sex determination (GSD, e.g. mammals, birds, and most dioecious plants) to environmental sex determination (ESD, e.g. many reptiles) and includes a mixture of both, for example when an individual’s genetically determined sex is environmentally reversed during ontogeny (ESR, environmental sex reversal, e.g. many fish and amphibia). ESD and ESR can lead to widely varying and unstable population sex ratios. Populations exposed to conditions such as endocrine‐active substances or temperature shifts may decline over time due to skewed sex ratios, a scenario that may become increasingly relevant with greater anthropogenic interference on watercourses. Continuous exposure of populations to factors causing ESR could lead to the extinction of genetic sex factors and may render a population dependent on the environmental factors that induce the sex change. However, ESR also presents opportunities for population management, especially if the Y or W chromosome is not, or not severely, degenerated. This seems to be the case in many amphibians and fish. Population growth or decline in such species can potentially be controlled through the introduction of so‐called Trojan sex genes carriers, individuals that possess sex chromosomes or genes opposite from what their phenotype predicts. Here, we review the conditions for ESR, its prevalence in natural populations, the resulting physiological and reproductive consequences, and how these may become instrumental for population management.  相似文献   

7.
The problem of the functioning specificity of sex chromosomes during the early stages of embryogenesis in man and the associated problem of the sex ratio in spontaneous and induced abortions, as well as in newborns, remains open. We have conducted a cytogenetic examination of 342 spontaneous abortions divided into three clinical groups on the basis of the severity of the developmental disturbances of the embryo: spontaneous abortionssensu stricto with a developed embryo without any significant intrauterine delay of development (n=100), nondeveloping pregnancies (n=176), and anembryonic fetuses (n=66). The frequency of chromosomal mutations in these groups was 22.0, 48.3, and 48.5%, respectively. Statistical analysis has demonstrated significant differences between the studied groups in the frequencies of the normal and abnormal karyotypes: the major contributions to these differences were associated with autosomal trisomy, triploidy, and the 46.XY karyotype. The presence of 46.XY may reflect the specific genetic mechanisms of the prenatal mortality of embryos with the normal karyotype, associated with sex and/or with the imprinting of X-chromosomes. The sex ratio in spontaneous abortions with the normal karyotype was as follows: 0.77 for spontaneous abortions with well-developed embryos without any significant intrauterine delay of development; 0.60 for nondeveloping pregnancies; and 0.31 for anembryonic fetuses. An analysis of DNA from the embryos and their parents has demonstrated a low probability of contamination of cell cultures with mother cells as a possible source of the prevalence of embryos with the 46.XX karyotype among spontaneous abortions. Nondeveloping pregnancies and anembryonic fetuses showed statistically significant differences in the sex ratio from the control group consisting of medical abortions (1,11). Differences in the sex ratio were due to an increasingly lower proportion of embryos with karyotype 46.XY (relative to the expected one) among the fetuses with an increased severity of developmental disturbances. The statistical “chances ratio” index also provided evidence that embryos with the 46.XY karyotype had a higher propensity to produce a well-formed fetus as compared with the female embryos. We propose that the expression of genes of the maternal X-chromosome in XY embryos supports a more stable development during early embryogenesis as compared with XX embryos. In the latter case, normal development is coupled with the operation of an additional mechanism for compensation of the dose of X-linked genes. Operation of this mechanism increases the probability of disturbances in female embryos. A higher viability of XY embryos during the early stages of ontogenesis in man appears to explain their underrepresentation in samples of spontaneously aborted embryos and appears to be the major factor responsible for the deviation of the sex ratio from the theoretically expected value.  相似文献   

8.
Sex allocation theory predicts that reproducing individuals will increase their fitness by facultatively adjusting their relative investment towards the rarer sex in response to population shifts in operational sex ratio (OSR). The evolution of facultative manipulation of sex ratio depends on the ability of the parents to track the conditions favouring skewed sex allocation and on the mechanism controlling sex allocation. In animals, which have well-developed sensorial mechanisms, facultative adjustment of sex ratios has been demonstrated on many occasions. In this paper, we show that plants have mechanisms that allow them to evaluate the population OSR. We simulated three different conditions of population OSR by manipulating the amount of pollen received by the female flowers of a monoecious herb, and examined the effect of this treatment on the allocation to male vs. female flowers. A shortage of pollen on the stigmas resulted in a more male-skewed sex allocation, whereas plants that experienced a relatively pollen rich environment tended to produce a more female-skewed sex allocation pattern. Our results for Begonia gracilis demonstrate that the individuals of this species are able to respond to the levels of pollination intensity experienced by their female flowers and adjust their patterns of sex allocation in accordance to the expectations of sex allocation theory.  相似文献   

9.
Sex-allocation theory suggests that selection may favour maternal skewing of offspring sex ratios if the fitness return from producing a son differs from that for producing a daughter. The operational sex ratio (OSR) may provide information about this potential fitness differential. Previous studies have reached conflicting conclusions about whether or not OSR influences sex allocation in viviparous lizards. Our experimental trials with oviparous lizards (Amphibolurus muricatus) showed that OSR influenced offspring sex ratios, but in a direction opposite to that predicted by theory: females kept in male-biased enclosures overproduced sons rather than daughters (i.e. overproduced the more abundant sex). This response may enhance fitness if local OSRs predict survival probabilities of offspring of each sex, rather than the intensity of sexual competition.  相似文献   

10.
Complex sex allocation in the laughing kookaburra   总被引:3,自引:5,他引:3  
In groups of the cooperatively breeding laughing kookaburra(Dacelo novaeguineae), offspring sex varied with the type ofsocial group and with hatch rank. Groups with female helpers,especially if all helpers were female, had male-biased clutchand fledging sex ratios. Groups without female helpers (unassistedpairs or male-only helpers) had female-biased clutch and fledgingsex ratios. Breeding females responded facultatively to increasesin the number of female helpers in their group by producingmore male eggs. These biases may occur if breeding femalestry to limit the number of daughters recruited into their groupbecause unlike male helpers, female helpers depress the breedingsuccess of their parents. Across all nests, two-thirds of first-hatchedyoung were male, two-thirds of second-hatched young were female, and the sex ratio of third-hatched young was even. Hatch ranksex ratios also varied dramatically between different typesof social groups, from 16.7% for second-hatched nestlings ofunassisted pairs to 100% for first-hatched nestlings of groupswith only female helpers. A corollary of the relationship betweenhatch rank and sex was that hatching sex sequences were distributed nonrandomly: all groups avoided hatching a daughter first followedby a son (FM). Sibling competition is aggressive and sometimesfatal. Since females grow to be 15% larger than males the hatchingsequence of sexes could affect nestling growth and mortality.However, an exhaustive analysis found little evidence thatgrowth or survival of males was compromised if hatched aftera sister. The small number of FM sequences may only have occurredin nests that were able to ameliorate any negative consequences.Alternatively, when clutch size is small and fledging successunpredictable because of brood reduction, the preferred broodsex ratio may be contingent on the number of fledged young,making it advantageous to order the sexes in the brood.  相似文献   

11.
Theory predicts that a 1 : 1 sex ratio is favoured in the absence of countervailing selection pressures. In an experiment with Drosophila melanogaster, we found significantly greater variation in the offspring sex ratios of freely mated flies than would be expected by the binomial distribution. In a surprise result, control flies given no mate choice exhibited significant under-dispersal in their sex ratio variation, possibly from sperm limitation. Both treatments, however, produced populations with a 1 : 1 sex ratio. This supports the hypothesis that sexually antagonistic selection for reproductive success in sons, and fecundity in daughters, may overcome selection for an equal sex ratio. Such precision in sex allocation may allow for the maintenance of genetic variation underlying trade-offs between male and female reproductive success.  相似文献   

12.
At Arapaho Prairie, in the sandhills of western Nebraska, the dioecious annual Croton texensis (Euphorbiaceae) exhibits biased sex ratios. Moreover, the direction of bias changes from year to year: in 1994 the study population was significantly female biased, in 1995 and 1996 it was significantly male biased, and in 1997 and 1998 the sex ratio did not differ from 1 : 1. Such variation in the observed sex ratio in plants is frequently attributed to environmental sex determination (ESD), which is favored by natural selection if the rate of fitness gain across an environmental gradient is greater for one sex than the other. We performed experiments to determine: (1) whether variation in the sex ratio is correlated with environmental conditions, as would be expected if ESD is operating, and (2) whether ESD, if present, would be favored by natural selection. In a common garden experiment in which water and fertilizer were manipulated the sex ratio was marginally male biased in treatments in which water was added, but not different from 1 : 1 in other treatments. In field plots into which seeds were planted none of several soil characteristics, nor overall plot quality for C. texensis (measured as average plant biomass) were correlated with plot sex ratio. However, plots in which a large number of planted seeds emerged tended to be female biased. These results provide very weak evidence for sex ratio bias across an environmental gradient, and thus provide little evidence for ESD. Moreover, sex-by-environment interactions for fitness, which are required for the evolution of ESD, were absent for all measured variables. Thus, ESD does not appear to be favored by natural selection in this population. Instead, these biases may have been caused by differences between the sexes in germination and/or early mortality.  相似文献   

13.
Parental sex ratio control was investigated in Gammarus duebeni, an amphipod with an environmentally mediated sex determining system. The effect on the F2 generation sex ratio of the photoperiodic conditions experienced by a) the P generation during and after copulation, b) the F1 generation before and after sex determination, and c) the F2 generation themselves during the period of sex determination, was tested. The photoperiodic conditions the F2 generation experienced during the period of sex determination had a significant effect on their sex ratio (more males were produced under long-day than under short-day conditions), but the photoperiodic conditions experienced by the F1 generation males and females or the P generation on the F1 male's side had no effect on the F2 sex ratio. However, the photoperiodic conditions the P generation on the F1 female's side experienced significantly affected the F2 sex ratio. When these animals experienced long-day conditions the F2 generation became female biased and when they experienced short-day conditions, male biased. It is proposed that the mechanism of control operates through the F1 generation mothers whilst in an embryonic stage of development in the P generation mother's brood pouch. The photoperiodically mediated effects of the embryonic F1 generation mother and the F2 generation on sex determination are additive. A mechanism by which both F1 generation maternal and F2 generation sex ratio control could operate in the field is proposed.  相似文献   

14.
Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.  相似文献   

15.
It was determined if the sensitivity inmacular mutant mouse to copper-induced toxicity was affected by sex or age. The sensitivity in 6–8-d-old or 3–4-wk-oldmacular mutant mouse to copper-induced toxicity was not affected by sex. However, 8–9-wk-old mutant females were more sensitive to copper-induced toxicity than mutant males. Furthermore, 6–8-d-old or 3–4-wk-old mutant males were more sensitive to copper-induced toxicity than 8–9-wk-old mutant males. However, age-related differences in sensitivity to copper-induced toxicity did not occur significantly in mutant females. On the other hand, in the case of normal mice, the sensitivity in 6–8-d-old or 3–4-wk-old mice to copper-induced toxicity was not also affected by sex. In contrast to mutant, however, 8–9-wk-old normal males were more sensitive to copper-induced toxicity than 8–9-wk-old normal females. Adult males were also more sensitive to copper-induced toxicity than 6–8-d-old or 3–4-wk-old males. However, age-related differences in sensitivity to copper-induced toxicity did not occur significantly in normal females. These results indicate that sex- and age-related differences in the copper-induced toxicity exist inmacular mutant mice.  相似文献   

16.
Colonies of social insects that undergo fission as a componentof reproduction produce large excesses of males. Hypothesesto explain this phenomenon have assumed that the workers thatconstitute the entourage for the new queen (or queens) representinvestment in female reproductives. Selection for optimal colonysex allocation then leads to an increase in production of malesthat balances the investment in females based on their relativereproductive values. We show that the construction of comb dedicatedto the production of males (drone comb) versus workers (workercomb) is a component of sex investment under the control ofcolony workers. Relative comb construction was highly correlatedwith the relative investment in male and worker brood. Coloniesthat invested relatively more in their total numbers of malesinvested less in the dry weight of individual workers. Coloniesthat had more adult workers produced a greater number of malesand workers, but colony size did not affect the proportionalinvestment in drone comb or brood. Genetic variability was foundfor the number of adult workers in colonies, the amount of dronecomb produced, the amount of worker comb produced, and the dryweight of adult workers, suggesting that sex allocation is aselectable trait in honeybees.  相似文献   

17.
Sex reversal has been suggested to have profound implications for the evolution of sex chromosomes and population dynamics in ectotherms. Occasional sex reversal of genetic males has been hypothesized to prevent the evolutionary decay of nonrecombining Y chromosomes caused by the accumulation of deleterious mutations. At the same time, sex reversals can have a negative effect on population growth rate. Here, we studied phenotypic and genotypic sex in the common frog (Rana temporaria) in a subarctic environment, where strongly female‐biased sex ratios have raised the possibility of frequent sex reversals. We developed two novel sex‐linked microsatellite markers for the species and used them with a third, existing marker and a Bayesian modelling approach to study the occurrence of sex reversal and to determine primary sex ratios in egg clutches. Our results show that a significant proportion (0.09, 95% credible interval: 0.04–0.18) of adults that were genetically female expressed the male phenotype, but there was no evidence of sex reversal of genetic males that is required for counteracting the degeneration of Y chromosome. The primary sex ratios were mostly equal, but three clutches consisted only of genetic females and three others had a significant female bias. Reproduction of the sex‐reversed genetic females appears to create all‐female clutches potentially skewing the population level adult sex‐ratio consistent with field observations. However, based on a simulation model, such a bias is expected to be small and transient and thus does not fully explain the observed female‐bias in the field.  相似文献   

18.
Adult sex ratio (ASR) is a central concept in population demography and breeding system evolution, and has implications for population viability and biodiversity conservation. ASR exhibits immense interspecific variation in wild populations, although the causes of this variation have remained elusive. Using phylogenetic analyses of 187 avian species from 59 families, we show that neither hatching sex ratios nor fledging sex ratios correlate with ASR. However, sex-biased adult mortality is a significant predictor of ASR, and this relationship is robust to 100 alternative phylogenetic hypotheses, and potential ecological and life-history confounds. A significant component of adult mortality bias is sexual selection acting on males, whereas increased reproductive output predicts higher mortality in females. These results provide the most comprehensive insights into ASR variation to date, and suggest that ASR is an outcome of selective processes operating differentially on adult males and females. Therefore, revealing the causes of ASR variation in wild populations is essential for understanding breeding systems and population dynamics.  相似文献   

19.
In order to maximize their fitness under Local Mate Competition (LMC), arrhenotokous female wasps have to produce a precise sex ratio when encountering hosts. Recent progress in the theory of hymenopterous parasitoid reproduction suggest that they manage to do it by laying male and female eggs in a particular order and that such reproductive strategies are adaptive. Therefore, the determinism of such sequential patterns would be regulated by genetic control on which natural selection could act. To test this hypothesis, sequences of oviposition were recorded in a set ofTrichogramma brassicae Bezdenko (Hymenoptera; Trichogrammatidae) females and in their daughters by providing themEphestia kuehniella Zeller (Lepidoptera; Pyralidae) eggs. In order to describe accurately sex pattern within these oviposition sequences, I present a joined non-parametric and multivariate statistical method. It is shown thatT. brassicae females do not produce male and female eggs in random sequences. Moreover, the way they organize the sequence of the sexes in their progeny seems to be under a strong genetic control. The evolutionary consequences of such results are discussed.  相似文献   

20.
Abstract 1. Hylaeus alcyoneus is an endemic solitary bee common on coastal heaths of Western Australia. The bee is unusual in that males are larger than females. This size dimorphism presents an opportunity to test the theory of resource-dependent sex allocation, in which theory predicts that when resources are low the sex ratio should be biased towards the smaller sex. In most bees, females are larger than males and, in line with theoretical prediction, sex ratios are male biased when resources are scarce.
2. The emerging sex ratio and brood mass from a natural population of H. alcyoneus using trap nests was studied over two seasons (1999, 2000). A switch from a male- to a female-biased sex ratio through the season was found, which was related to a reduced floral resource.
3. Fisherian sex ratio theory predicts that total investment in each sex throughout a season should be equal and that the sex ratio should be biased towards the smaller sex. By measuring the mass of the emerging progeny, the total investment was found to favour males. Possible explanations for this bias in investment are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号