首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dhar G  Faull KF  Schneewind O 《Biochemistry》2000,39(13):3725-3733
Many surface proteins of Gram-positive bacteria are anchored to the cell wall by a mechanism requiring a COOH-terminal sorting signal with a conserved LPXTG motif. In Staphylococcus aureus, surface proteins are cleaved between the threonine and the glycine of the LPXTG motif. The carboxyl of threonine is subsequently amide linked to the amino group of the pentaglycine cell wall crossbridge. Here we investigated the anchor structure of surface proteins in Listeria monocytogenes. A methionine and six histidines (MH(6)) were inserted upstream of the LPXTG motif of internalin A (InlA), a cell-wall-anchored surface protein of L. monocytogenes. The engineered protein InlA-MH(6)-Cws was found anchored in the bacterial cell wall. After peptidoglycan digestion with phage endolysin, InlA-MH(6)-Cws was purified by affinity chromatography. COOH-terminal peptides of InlA-MH(6)-Cws were obtained by cyanogen bromide cleavage followed by purification on a nickel-nitriloacetic acid column. Analysis of COOH-terminal peptides with Edman degradation and mass spectrometry revealed an amide linkage between the threonine of the cleaved LPXTG motif and the amino group of the m-diaminopimelic acid crossbridge within the listerial peptidoglycan. These results reveal that the cell wall anchoring of surface proteins in Gram-positive bacteria such as S. aureus and L. monocytogenes occurs by a universal mechanism.  相似文献   

2.
Listeria monocytogenes is a gram-positive bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell. During cell-to-cell spread, bacteria become temporarily confined to secondary vacuoles. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from secondary vacuoles. PC-PLC requires cleavage of an N-terminal propeptide for activation, and Mpl, a metalloprotease of Listeria, is involved in the proteolytic activation of PC-PLC. Previously, we showed that cell wall translocation of PC-PLC is inefficient, resulting in accumulation of PC-PLC at the membrane-cell wall interface. In infected cells, rapid cell wall translocation of PC-PLC is triggered by a decrease in pH and correlates with cleavage of the propeptide in an Mpl-dependent manner. To address the role of the propeptide and of Mpl in cell wall translocation of PC-PLC, we generated a cleavage site mutant and a propeptide deletion mutant. The intracellular behavior of these mutants was assessed in pulse-chase experiments. We observed efficient translocation of the proform of the PC-PLC cleavage site mutant in a manner that was pH sensitive and Mpl dependent. However, the propeptide deletion mutant was efficiently translocated into host cells independent of Mpl and pH. Overall, these results suggest that Mpl regulates PC-PLC translocation across the bacterial cell wall in a manner that is dependent on the presence of the propeptide but independent of propeptide cleavage. In addition, similarly to Mpl-mediated cleavage of PC-PLC propeptide, Mpl-mediated translocation of PC-PLC across the bacterial cell wall is pH sensitive.  相似文献   

3.
Genetically engineered cells with mutations of relevance to electroporation, cell membrane permeabilization by electric pulses, can become a promising new tool for fundamental research on this important biotechnology. Listeria monocytogenes mutants lacking DltA or MprF and assayed for sensitivity to the cathelicidin like anti-microbial cationic peptide (mCRAMP), were developed to study the effect of cell wall charge on electroporation. Working in the irreversible electroporation regime (IRE), we found that application of a sequence of 50 pulses, each 50μs duration, 12.5kV/cm field, delivered at 2Hz led to 2.67±0.29 log reduction in wild-type L. monocytogenes, log 2.60±0.19 in the MprF-minus mutant, and log 1.33±0.13 in the DltA-minus mutant. The experimental observation that the DltA-minus mutant was highly susceptible to cationic mCRAMP and resistant to IRE suggests that the charge on the bacterial cell wall affects electroporation and shows that this approach may be promising for fundamental studies on electroporation.  相似文献   

4.
5.
6.
We report the application of electrospray ionization (ESI) mass spectrometry for compositional characterization of wall teichoic acids (WTA), a major component of gram-positive bacterial cell walls. Tandem mass spectrometry (ESI-MS/MS) of purified and chemically hydrolyzed monomeric WTA components provided sufficient information to identify WTA monomers and their specific carbohydrate constituents. A lithium matrix was used for ionization of uncharged WTA monomers, and successfully applied to analyze the WTA molecules of four Listeria strains differing in carbohydrate substitution on a conserved polyribitol-phosphate backbone structure. Carbohydrate residues such as N-acetylglucosamine or rhamnose linked to the WTA could directly be identified by ESI-MS/MS, circumventing the need for quantitative analysis by gas chromatography. The presence of a terminal N-acetylglucosamine residue tethered to the ribitol was confirmed using fluorescently labeled wheat-germ agglutinin. In conclusion, the mass spectrometry method described here will greatly facilitate compositional analysis and characterization of teichoic acids and similar macromolecules from diverse bacterial species, and represents a significant advance in the identification of serovar-specific carbohydrates and sugar molecules on bacteria.  相似文献   

7.
Owing to its unique intracellular biology that allows it to gain access to the host cell cytosol, Listeria monocytogenes induces potent, protective CD8 responses. The study of these responses has served as a paradigm to understand cell-mediated immunity to microbial pathogens. The availability of mutants specifically defective in unique aspects of the intracellular biology of this pathogen has greatly aided these studies. During the past few years, progress has been made to understand the contribution of the innate immune system and CD4 T cells in the generation of robust, long lasting CD8 responses to L. monocytogenes.  相似文献   

8.
The lipids of Listeria monocytogenes   总被引:3,自引:0,他引:3  
  相似文献   

9.
Adherence of pathogenic microorganisms to the cell surface is a key event during infection. We have previously reported the characterization of Listeria monocytogenes transposon mutants defective in adhesion to eukaryotic cells. One of these mutants had lost the ability to produce Ami, a 102 kDa autolytic amidase with an N-terminal catalytic domain and a C-terminal cell wall-anchoring domain made up of repeated modules containing the dipeptide GW ('GW modules'). We generated ami null mutations by plasmid insertion into L. monocytogenes strains lacking the invasion proteins InlA (EGDDeltainlA), InlB (EGDDeltainlB) or both (EGDDeltainlAB). These mutants were 5-10 times less adherent than their parental strains in various cell types. The adhesion capacity of the mutants was restored by complementation with a DNA fragment encoding the Ami cell wall-anchoring domain fused to the Ami signal peptide. The cell-binding activity of the Ami cell wall-anchoring domain was further demonstrated using the purified polypeptide. Growth of the ami null mutants constructed in EGD and EGDDeltainlAB backgrounds was attenuated in the livers of mice inoculated intravenously, indicating a role for Ami in L. monocytogenes virulence. Adhesive properties have recently been reported in the non-catalytic domain of two other autolysins, Staphylococcus epidermidis AtlE and Staphylococcus saprophyticus Aas. Interestingly, we found that these domains were also composed of repeated GW modules. Thus, certain autolysins appear to promote bacterial attachment by means of their GW repeat domains. These molecules may contribute to the colonization of host tissues by Gram-positive bacteria.  相似文献   

10.
The hybridoma Ped-2E9 based cytotoxicity assay was developed to distinguish virulent from avirulent Listeria species in 6 hr. The cytotoxicity effect on Ped-2E9 was reported to be primarily due the cytolytic action of listeriolysin O (LLO), produced by L. monocytogenes. In this study, the effect of a reducing agent, dithiothreitol (DTT, 0-2 mM) that is known to activate LLO was investigated to make the Ped-2E9 based cytotoxicity assay an even more sensitive and rapid. Also, we examined the effect of fetal bovine serum (FBS, 0-50%), a common ingredient of tissue culture media on cytotoxicity. A DTT concentration of 0.5 mM gave an optimum cytotoxicity effect, which could be measured by both alkaline phosphatase (AP) and lactate dehydrogenase (LDH) assays in just 1.5-2 hr. FBS, at levels between 10 to 50%, significantly inhibited Listeria-mediated cytotoxicity. Concentrated culture filtrates from L. monocytogenes or LLO producing recombinant L. innocua (prfA+ hlyA+) strain also caused cytotoxicity effects, which were observed by scanning electron microscopy or a cytotoxicity assay in 2-3 hr. Interestingly, addition of DTT to culture filtrates produced 100% cell cytotoxicity in just 15 min. This indicated that LLO activity, which is responsible for Ped-2E9 cytotoxicity, was augmented several folds with the addition of a reducing agent. Examination of Listeria isolates belonging to different serogroups from clinical sources or naturally contaminated meat products with DTT gave cytotoxicity results in 2 hr, which were comparable to the 5-hr assay analyzed concurrently without DTT. These results indicated that DTT, which activated the LLO, could be used in the cytotoxicity assay to enhance Listeria-mediated Ped-2E9 cell cytotoxicity. This knowledge will greatly assist us to develop a user-friendly rapid assay to screen cytopathogenic properties of Listeria species.  相似文献   

11.
The virulence of Listeria monocytogenes is directly related to its ability to spread from cell to cell without leaving the intracellular milieu. During cell-to-cell spread, bacteria become temporarily confined to secondary vacuoles. Among the bacterial factors involved in escape from these vacuoles is a secreted broad-range phospholipase C (PC-PLC), the activation of which requires processing of an N-terminal prodomain. Mpl, a secreted metalloprotease of Listeria, is involved in the proteolytic activation of PC-PLC. We previously showed that, during intracellular growth, bacteria maintain a pool of PC-PLC that is not accessible to antibodies and that is rapidly released in its active form in response to a decrease in pH. pH-regulated release of active PC-PLC is Mpl dependent. To further characterize the mechanism regulating secretion of PC-PLC, the bacterial localization of PC-PLC and Mpl was investigated. Both proteins were detected in the bacterial supernatant and lysate with no apparent changes in molecular weight. Extraction of bacteria-associated PC-PLC and Mpl required cell wall hydrolysis, but there was no indication that either protein was covalently bound to the bacterial cell wall. Results from pulse-chase experiments performed with infected macrophages indicated that the rate of synthesis of PC-PLC exceeded the rate of translocation across the bacterial cell wall and confirmed that the pool of PC-PLC associated with bacteria was efficiently activated and secreted upon acidification of the host cell cytosol. These data suggest that bacterially associated PC-PLC and Mpl localize at the cell wall-membrane interface and that translocation of PC-PLC across the bacterial cell wall is rate limiting, resulting in the formation of a bacterially associated pool of PC-PLC that would readily be accessible for activation and release into nascent secondary vacuoles.  相似文献   

12.
L.-J. CHEN, J. WANG AND R.E. LEVIN. 1996. When growing cells were incubated in the presence of 100 ppm benzylpenicillin (BP) for 30 min and then harvested for metabolic studies, the initial rate of glucose utilization by resting cells was reduced by 19.6% compared to control cells, whereas the rates of protein, DNA and RNA synthesis were reduced by 40.7%, 55.0% and 87.5% respectively. Growth in the presence of 100 ppm BP for 2 h was found to result in a marked depletion of cell wall proteins.  相似文献   

13.
We report on the cloning of the structural gene for penicillin-binding protein 5 (PBP5), lmo2754. We also describe the enzymatic activity of PBP5 and characterize a mutant lacking this activity. Purified PBP5 has dd-carboxypeptidase activity, removing the terminal D-alanine residue from murein pentapeptide side chains. It shows higher activity against low molecular weight monomeric pentapeptide substrates compared to dimeric pentapeptide compound. Similarly, PBP5 preferentially cleaves monomeric pentapeptides present in high-molecular weight murein sacculi. A Listeria monocytogenes mutant lacking functional PBP5 was constructed. Cells of the mutant are viable, showing that the protein is dispensable for growth, but grow slower and have thickened cell walls.  相似文献   

14.
The heat resistance of Listeria monocytogenes   总被引:4,自引:0,他引:4  
Heat resistance data for Listeria monocytogenes are reviewed. The organism is appreciably more resistant than common Salmonella serotypes but less resistant than Salmonella senftenberg 775W. Reports that the organism can survive heating at 80°C have not been substantiated and are incompatible with carefully determined D and z values in milk and a range of foods. Cooking food to an internal temperature of 70°C for 2 min is adequate to ensure destruction of L. monocytogenes. Normal pasteurization procedures will inactivate L. monocytogenes in milk but the margin of safety is greater for vat pasteurization than for high temperature short time treatment.  相似文献   

15.
The facultative intracellular bacterial pathogen Listeria monocytogenes invades and multiplies in many mammalian cell types. During the interaction with its host cells it strongly interferes with and modulates host cell functions. In the present review we summarize the current knowledge on the modulation of signal transduction pathways by secreted listerial products prior to bacterium-cell contact, during uptake, or while L. monocytogenes resides in the different intracellular compartments.  相似文献   

16.
In the last two decades, listeriosis, caused by the intracellular pathogen Listeria monocytogenes, became one of the most concerning food-born infections. Although it had been known before as an infectious disease of limited importance, listeriosis was brought into attention of scientists due to the frequent outbreaks recently reported. Despite the major progress made towards understanding the mechanisms of virulence of L. monocytogenes, our current knowledge into the process of Listeria-associated pathogenesis and virulence is still partial and fragmentary. In this study we demonstrate that T lymphocytes with reactivity to L. monocytogenes are frequently present in healthy individuals (73%), most probably as a consequence of subclinical infections. Host resistance to infection by L. monocytogenes involves a series of interactions between cells of the immune system, of which the antigen presenting cell/T lymphocyte partnership is essential. The ability of memory T cells to respond when exposed to their target antigen is traditionally assessed by measuring uptake of [3H] - thymidine. Our study has been carried out by means of an alternative methodology based on flow-cytometry, an approach which has several advantages on [3H] - thymidine incorporation technique: allows targeted analysis of particular cell types, simultaneous assessment of various cellular markers, and circumvents handling of radioisotopes.  相似文献   

17.
18.
CD8 T cell immunome analysis of Listeria monocytogenes   总被引:6,自引:0,他引:6  
The identification of T cell epitopes is crucial for the understanding of the host response during infections with pathogenic microorganisms. Generally, the identification of relevant T cell responses is based on the analysis of T cell lines propagated in vitro. We used an ex vivo approach for the analysis of the CD8 T cell response against Listeria monocytogenes that is based upon the fractionation of naturally processed antigenic peptides and subsequent analysis with T cells in an enzyme-linked immunospot (ELISPOT) assay. Our data indicate that the direct ex vivo ELISPOT analysis of peptides extracted from infected tissues represents a versatile and potent test system for the analysis of the CD8 T cell immunome of microorganisms that furthermore requires neither the knowledge of the microbial genome nor of the specificity of responding T cells.  相似文献   

19.
Wall teichoic acid (WTA) comprises a class of glycopolymers covalently attached to the peptidoglycan of gram positive bacteria. In Listeria monocytogenes, mutations that prevent addition of certain WTA decorating sugars are attenuating. However, the steps required for decoration and the pathogenic process interrupted are not well described. We systematically examined the requirement for WTA galactosylation in a mouse oral‐virulent strain by first creating mutations in four genes whose products conferred resistance to a WTA‐binding bacteriophage. WTA biochemical and structural studies indicated that galactosylated WTA was directly required for bacteriophage adsorption and that mutant WTA lacked appreciable galactose in all except one mutant – which retained a level ca. 7% of the parent. All mutants were profoundly attenuated in orally infected mice and were impaired in cell‐to‐cell spread in vitro. Confocal microscopy of cytosolic mutants revealed that all expressed ActA on their cell surface and formed actin tails with a frequency similar to the parent. However, the mutant tails were significantly shorter – suggesting a defect in actin based motility. Roles for the gene products in WTA galactosylation are proposed. Identification and interruption of WTA decoration pathways may provide a general strategy to discover non‐antibiotic therapeutics for gram positive infections. © 2016 John Wiley & Sons Ltd  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号