首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On exposure to sunlight, urocanic acid (UCA) in the skin is converted from trans to the cis form and distributed systemically where it confers systemic immunosuppression. The aim of this study was to determine if administration of cis-UCA would be effective in attenuating colitis and the possible role of IL-10. Colitis was induced in 129/SvEv mice by administering 5% dextran sodium sulfate (DSS) for 7 days in drinking water. During this period mice received daily subcutaneously injections of cis-UCA or vehicle. To examine a role for IL-10, 129/SvEv IL-10(-/-) mice were injected for 24 days with cis-UCA or vehicle. Clinical disease was assessed by measurement of body weight, stool consistency, and presence of blood. At sacrifice, colonic tissue was collected for histology and measurement of myeloperoxidase and cytokines. Splenocytes were analyzed for CD4+CD25+FoxP3+ T-regulatory cells via flow cytometry. Murine bone-marrow derived antigen-presenting cells were treated with lipopolysaccharide (LPS) ± UCA and cytokine secretion measured. Our results demonstrated that cis-UCA at a dose of 50 μg was effective in ameliorating DSS-induced colitis as evidenced by reduced weight loss and attenuated changes in colon weight/length. This protection was associated with reduced colonic expression of CXCL1, an increased expression of IL-17A and a significant preservation of splenic CD4+CD25+FoxP3+ T-regulatory cells. cis-UCA decreased LPS induced CXCL1, but not TNFα secretion, from antigen-presenting cells in vitro. UCA reduced colonic levels of IFNγ in IL-10(-/-) mice but did not attenuate colitis. In conclusion, this study demonstrates that cis-urocanic acid is effective in reducing the severity of colitis in a chemically-induced mouse model, indicating that pathways induced by ultraviolet radiation to the skin can influence distal sites of inflammation. This provides further evidence for a possible role for sunlight exposure in modulating inflammatory disorders.  相似文献   

2.
3.
Journal of Physiology and Biochemistry - The ulcerative colitis (UC) is a typical inflammatory bowel disease (IBD) causing great damages, while strictosamide (STR) is a natural alkaloid that...  相似文献   

4.
Inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis are chronic inflammatory disorders of the intestinal tract with excessive production of cytokines, adhesion molecules, and reactive oxygen species. Although nitric oxide (NO) is reported to be involved in the onset and progression of IBDs, it remains controversial as to whether NO is toxic or protective in experimental colitis. We investigated the effects of oral nitrite as a NO donor on dextran sulfate sodium (DSS)-induced acute colitis in mice. Mice were fed DSS in their drinking water with or without nitrite for up to 7 days. The severity of colitis was assessed by disease activity index (DAI) observed over the experimental period, as well as by the other parameters, including colon lengths, hematocrit levels, and histological scores at day 7. DSS treatment induced severe colitis by day 7 with exacerbation in DAI and histological scores. We first observed a significant decrease in colonic nitrite levels and increase in colonic TNF-α expression at day 3 after DSS treatment, followed by increased colonic myeloperoxidase (MPO) activity and increased colonic expressions of both inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) at day 7. Oral nitrite supplementation to colitis mice reversed colonic nitrite levels and TNF-α expression to that of normal control mice at day 3, resulting in the reduction of MPO activity as well as iNOS and HO-1 expressions in colonic tissues with clinical and histological improvements at day 7. These results suggest that oral nitrite inhibits inflammatory process of DSS-induced experimental colitis by supplying nitrite-derived NO instead of impaired colonic NOS activity.  相似文献   

5.
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. The receptor‐interacting protein kinase 3 (RIP3) was reported to be involved in many inflammatory disease. However, the mechanism of RIP3 in the pathogenesis of UC is still unclear. To investigate the effects and possible mechanism of RIP3 in UC pathogenesis, RIP3‐/‐ mice was used in dextran sulfate sodium (DSS)‐induced colitis model. It was found that by DSS‐induced colitis, RIP3‐/‐ mice showed significantly enhanced colitis symptoms, including increased weight loss, colon shortening, and colonic mucosa damage and severity, but decreased production of interleukin 6 and interleukin 1β. The results showed that RIP3 deficiency could not ameliorate but exacerbate the severity of colitis. On the mechanism, it was found that messenger RNA expressions of several repair‐associated cytokines including interleukin 6, interleukin 22, cyclooxygenase 2, epithelial growth factor receptor ligand Epiregulin and matrix metalloproteinase 10 were siginificant decreased in RIP3‐/‐ mice. Thus, RIP3‐/‐ mice exhibited an impaired tissue repair in response to DSS. In a conclusion, RIP3 deficiency exerted detrimental effects in DSS induced colitis partially because of the impaired repair‐associated cytokines expression.  相似文献   

6.
Dysbiosis of intestinal microflora has been postulated in ulcerative colitis (UC), which is characterized by imbalance of mucosal tissue associated bacterial communities. However, the specific changes in mucosal microflora during different stages of UC are still unknown. The aim of the current study was to investigate the changes in mucosal tissue associated microbiota during acute exacerbations and remission stages of UC. The mucosal microbiota associated with colon biopsy of 12 patients suffering from UC (exacerbated stage) and the follow-up samples from the same patients (remission stage) as well as non-IBD subjects was studied using 16S rRNA gene-based sequencing and quantitative PCR. The total bacterial count in patients suffering from exacerbated phase of UC was observed to be two fold lower compared to that of the non-IBD subjects (p?=?0.0049, Wilcox on matched-pairs signed rank tests). Bacterial genera including Stenotrophomonas, Parabacteroides, Elizabethkingia, Pseudomonas, Micrococcus, Ochrobactrum and Achromobacter were significantly higher in abundance during exacerbated phase of UC as compared to remission phase. The alterations in bacterial diversity with an increase in the abnormal microbial communities signify the extent of dysbiosis in mucosal microbiota in patients suffering from UC. Our study helps in identifying the specific genera dominating the microbiota during the disease and thus lays a basis for further investigation of the possible role of these bacteria in pathogenesis of UC.  相似文献   

7.
AimsTo further explore the anti-inflammatory properties of d-Limonene.Main methodsA rat model was used to compare evolution of TNBS (2,5,6-trinitrobenzene sulfonic acid)-induced colitis after oral feeding with d-Limonene compared to ibuprofen. Peripheral levels of TNF-α (Tumor Necrosis Factor alpha) were assessed in all animals. Cell cultures of fibroblasts and enterocytes were used to test the effect of d-Limonene respectively on TNFα-induced NF-κB (nuclear factor-kappa B) translocation and epithelial resistance. Finally, plasmatic inflammatory markers were examined in an observational study of diet supplementation with d-Limonene-containing orange peel extract (OPE) in humans.Key findingsAdministered per os at a dose of 10 mg/kg p.o., d-Limonene induced a significant reduction of intestinal inflammatory scores, comparable to that induced by ibuprofen. Moreover, d-Limonene-fed rats had significantly lowered serum concentrations of TNF-α compared to untreated TNBS-colitis rats. The anti-inflammatory effect of d-Limonene also involved inhibition of TNFα-induced NF-κB translocation in fibroblast cultures. The application of d-Limonene on colonic HT-29/B6 cell monolayers increased epithelial resistance. Finally, inflammatory markers, especially peripheral IL-6, markedly decreased upon OPE supplementation of elderly healthy subjects submitted or not to 56 days of dietary supplementation with OPE.SignificanceIn conclusion, d-Limonene indeed demonstrates significant anti-inflammatory effects both in vivo and in vitro. Protective effects on the epithelial barrier and decreased cytokines are involved, suggesting a beneficial role of d-Limonene as diet supplement in reducing inflammation.  相似文献   

8.
《Free radical research》2013,47(3):137-145
Abstract

Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of Nω-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.  相似文献   

9.
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder considered as a consequence of an aberrant response of the immune system to luminal antigens. Numerous groups of agents are being evaluated as novel therapeutic approaches for its treatment; in this way, different peptides have emerged as potential candidates. Galanin is an active neuropeptide distributed in the central and periphery nervous systems although it has been also described having important autocrine and paracrine regulatory capacities with interesting inflammatory and immune properties. In this line, we have observed that galanin treatment has a significant preventive effect in the experimental trinitrobenzensulfonic acid (TNBS) acute model of inflammatory colitis. The aim of the present study was to investigate intensively the role played by the peptide in the evolution of the inflammatory pathology associated to IBD. Galanin (5 and 10 microg/kg/day) was administered i.p., daily, starting 24 h after TNBS instillation, and continuing for 14 and 21 days. The lesions were blindly scored according to macroscopic and histological analyses and quantified as ulcer index. The results demonstrated that chronic administration of galanin improved the colon injury than the TNBS induced. The study by Western-blotting of the expression of nitric oxide inducible enzyme (iNOS), as well as the total nitrite production (NO) assayed by Griess-reaction, showed significant reduction associated with peptide administration. The number of mast cells was also identified in histological preparations stained with toluidine blue and the results showed that samples from galanin treatment, mostly at 21 days, had increased the number of these cells and many of them had a degranulated feature. In conclusion, chronic administration of galanin is able to exert a beneficial effect in the animal model of IBD assayed improving the reparative process. Participation of nitric oxide pathways and mucosal mast cells can not be discarded.  相似文献   

10.
Ulcerative colitis is an idiopathic chronic inflammatory condition of the large bowel associated with åbnormalities of mucin synthesis and secretion. In the present study, glycans were identified in 45 formalin-fixed, paraffin-embedded tissue samples from patients with ulcerative colitis. The tissue samples represented a spectrum of inflammation from chronic quiescent disease to severe inflammation. Thirteen biotinylated lectins, directed against a range of sialyl, fucosyl andN-acetylgalactosaminyl sequences, were applied using an avidin-peroxidase revealing system. The results were assessed semiquantitatively for a number of cellular sites. The expression of all sialyl sequences was increased in absorptive cells and in goblet cells and the expression of 2–6-linked sialyl sequences was enhanced in proportion to the degree of inflammation, while 2–3-linked sialyl sequences were diminished in more severe inflammation. The binding ofN-acetylgalactosaminyl-directed lectins was increased in the Golgi apparatus, while there was a reduction in the expression of -fucosyl sequences in severe degrees of inflammation. This suggests that there is an increased biosynthetic rate for sialyl residues in all stages of disease with a reduction in 2–3-linked sialyl and fucosyl sequences in severe inflammation, and a shift from storedN-acetylgalactosaminyl sequences in goblet cells to an earlier form in the Golgi apparatus. The changes in sialyl sequences are a feature of ulcerative colitis even in quiescent disease and may be related to its aetiology and early pathogenesis, while most of the other changes reflect the severity of the disease and are probably part of its later pathogenesis or of induced reactive changes.  相似文献   

11.

Background

The tetracyclic triterpene euphol is the main constituent found in the sap of Euphorbia tirucalli. This plant is widely known in Brazilian traditional medicine for its use in the treatment of several kinds of cancer, including leukaemia, prostate and breast cancers. Here, we investigated the effect of euphol on experimental models of colitis and the underlying mechanisms involved in its action.

Methodology/Principal Findings

Colitis was induced in mice either with dextran sulfate sodium (DSS) or with 2,4,6-trinitrobenzene sulfonic acid (TNBS), and the effect of euphol (3, 10 and 30 mg/kg) on colonic injury was assessed. Pro-inflammatory mediators and cytokines were measured by immunohistochemistry, enzyme-Linked immunoabsorbent assay (ELISA), real time-polymerase chain reaction (RT-PCR) and flow cytometry. Preventive and therapeutic oral administration of euphol attenuated both DSS- and TNBS-induced acute colitis as observed by a significant reduction of the disease activity index (DAI), histological/microscopic damage score and myeloperoxidase (MPO) activity in colonic tissue. Likewise, euphol treatment also inhibited colon tissue levels and expression of IL-1β, CXCL1/KC, MCP-1, MIP-2, TNF-α and IL-6, while reducing NOS2, VEGF and Ki67 expression in colonic tissue. This action seems to be likely associated with inhibition of activation of nuclear factor-κB (NF-κB). In addition, euphol decreased LPS-induced MCP-1, TNF-α, IL-6 and IFN-γ, but increased IL-10 secretion from bone marrow-derived macrophages in vitro. Of note, euphol, at the same schedule of treatment, markedly inhibited both selectin (P- and E-selectin) and integrin (ICAM-1, VCAM-1 and LFA-1) expression in colonic tissue.

Conclusions/Significance

Together, these results clearly demonstrated that orally-administered euphol, both preventive or therapeutic treatment were effective in reducing the severity of colitis in two models of chemically-induced mouse colitis and suggest this plant-derived compound might be a potential molecule in the management of inflammatory bowel diseases.  相似文献   

12.
There is increasing evidence that IL-12 and Th1-cytokines play an important role in intestinal inflammation. We therefore examined the role of IL-12 and interferon-gamma (IFN-gamma) in our model of dextran sulfate-induced acute colitis in mice. Treatment of mice with rmIL-12 during colitis induction resulted in severe aggravation as demonstrated by a greater loss of body weight, an increase of the histological parameters, and reduction of myeloperoxidase activity in colonic biopsies. Depletion of neutrophils in mice also led to aggravation of colitis. Neutralization of IFN-gamma in IL-12-treated mice with colitis inhibited these effects of IL-12. Neutralization of endogenous IFN-gamma or IL-12 with specific antibodies in DSS-treated mice, however, had only weak ameliorating effects. Since IL-12 and IFN-gamma have been shown to mediate experimental chronic colitis we conclude that the transition from a macrophage/neutrophil determined response to a Th-cell response promotes chronic intestinal inflammation.  相似文献   

13.
Ulcerative colitis (UC) is a chronic inflammatory disease of the large bowel. Its pathogenesis remains unclear, but it appears to result from a deregulated immune response, with infiltration of leukocytes into the mucosal interstitium. Several studies link oxidative stress and mitochondrial dysfunction to the pathogenesis of UC. Thus, the aim of this study was to evaluate the activities of mitochondrial respiratory chain complexes in the colonic mucosal of UC patients. Colonic biopsies were obtained from UC patients (n = 13). The control specimens were taken from patients without any history of inflammatory bowel disease (n = 8). Colon mucosal was removed by colonoscopy and homogenized. Mitochondrial respiratory chain complexes activities were then measured. Our results showed that the activity of complex I was not altered in UC patients, when compared to the control group. On the other hand, complexes II, III, and IV were decreased around 50–60% in the colonic mucosal of UC patients. Based on the present findings, we hypothesize that mitochondrial dysfunction may play a role in pathogenesis of UC.  相似文献   

14.
We recently demonstrated that inhalation of the endothelin receptor A (ETA) antagonist LU 135252 improved arterial oxygenation and reduced pulmonary artery pressure in experimental acute lung injury (ALI). In this study we analyzed potential immune modulatory effects of inhaled LU 135252 in experimental ALI. ALI was induced by repeated lung lavage in intubated (100% O2) and anesthetized piglets. Animals were randomly assigned to inhale either nebulized LU 135252 (0.3 mg.kg-1, ALI + LU group, n = 8) or saline buffer (ALI control group, n = 16), both for 30 min. Surviving animals were sacrificed 6 h after induction of ALI, and lung tissue specimens were obtained from all animals for histology and immunhistochemistry. Induction of ALI significantly decreased arterial oxygenation in all animals. Inhalation of LU 135252 significantly reduced mortality and induced significant and sustained increase in Pao2 (316 +/- 47 mm Hg vs. control 53 +/- 3 mm Hg, p < 0.001). We measured a significant reduction in the number of pulmonary leukocyte L1 antigen-positive cells in ALI + LU animals (8% +/- 1% positive cells vs. control 12% +/- 2% positive cells, p < 0.05). The number of CD3-positive cells was not altered by treatment with LU 135252. Pulmonary tissue concentration of IL-6 was significantly suppressed by LU 135252 inhalation (4 +/- 1 pg.100 mg-1 wet weight vs. control 7 +/- 1 pg.100 mg-1 wet weight, p < 0.05). Concentrations of TNF-alpha, IL-1beta, and ET-1 in pulmonary tissue were not influenced by inhalation of LU 135252. In conclusion, we demonstrated that inhalation of LU 135252 not only improves mortality and gas exchange, but also blunts the local immune response in experimental ALI.  相似文献   

15.
The aim of this study was to determine effects of changes in ulcerative colitis activity on mucosal and plasma PGE2 concentrations measured with an EIA in 49 patients who underwent sigmoidoscopy. The disease was diagnosed in 37 patients. Twelve patients with normal colonic mucosa served as controls. Patients were divided into three groups depending on the changes of endoscopic picture during a three-month follow-up. Some laboratory markers of the disease activity, such as C-reactive protein, albumin, gamma-globulin and hemoglobin concentrations, sedimentation rate, and white blood and platelets counts, were also evaluated. Initial examination revealed a significant, positive correlation of mucosal and plasma PGE2 concentration with endoscopic score. Follow-up of patients without significant progression of mucosal changes revealed constant and close to normal concentration of mucosal PGE2. Plasma PGE2 was higher at the second examination, yet without significant difference. Improvement of endoscopic picture resulted in significant decrease of plasma and mucosal PGE2 concentrations. Worsening of mucosal changes reflected endoscopically was associated with significant increase of PGE2. There were no remarkable changes in the values of analyzed laboratory markers of the disease activity. These results indicate the usefulness of mucosal or plasma PGE2 measurement as a possible prognostic marker in patients with ulcerative colitis.  相似文献   

16.
CD28-B7 interaction plays a critical costimulatory role in inducing T cell activation, while CTLA-4-B7 interaction provides a negative signal that is essential in immune homeostasis. Transfer of CD45RB(high)CD4(+) T cells from syngeneic mice induces transmural colon inflammation in SCID recipients. This adoptive transfer model was used to investigate the contribution of B7-CD28/CTLA-4 interactions to the control of intestinal inflammation. CD45RB(high)CD4(+) cells from CD28(-/-) mice failed to induce mucosal inflammation in SCID recipients. Administration of anti-B7.1 (but not anti-B7.2) after transfer of wild-type CD45RB(high)CD4(+) cells also prevented wasting disease with colitis, abrogated leukocyte infiltration, and reduced production of proinflammatory cytokines IL-2 and IFN-gamma by lamina propria CD4(+) cells. In contrast, anti-CTLA-4 treatment led to deterioration of disease, to more severe inflammation, and to enhanced production of proinflammatory cytokines. Of note, CD25(+)CD4(+) cells from CD28(-/-) mice similar to those from the wild-type mice were efficient to prevent intestinal mucosal inflammation induced by the wild-type CD45RB(high) cells. The inhibitory functions of these regulatory T cells were effectively blocked by anti-CTLA-4. These data show that the B7-CD28 costimulatory pathway is required for induction of effector T cells and for intestinal mucosal inflammation, while the regulatory T cells function in a CD28-independent way. CTLA-4 signaling plays a key role in maintaining mucosal lymphocyte tolerance, most likely by activating the regulatory T cells.  相似文献   

17.
BackgroundGegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium.PurposeThis study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models.MethodsAcute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4−/−) acute UC mice were also used in this study.ResultsGQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4−/− UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells.ConclusionsGQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.  相似文献   

18.
19.
20.
Diabetes mellitus is a disease characterized by impaired glucose metabolism that leads to retinopathy, brain micro-infarcts and other complications. We have previously shown that oral glycine administration to diabetic rats inhibits non-enzymatic glycation of hemoglobin and diminishes renal damage. In this work, we evaluated the capacity of the amino acid glycine (1% w/v, 130 mM) to attenuate diabetic complications in streptozotocin (STZ)-induced diabetic Wistar rats and compared them with non-treated or taurine-treated (0.5% w/v, 40 mM) diabetic rats. Glycine-treated diabetic rats showed an important diminution in the percentage of animals with opacity in lens and microaneurysms in the eyes. Interestingly, there was a diminished expression of O-acetyl sialic acid in brain vessels compared with untreated diabetic rats (P<0.05). Additionally, peripheral blood mononuclear cells isolated from glycine-treated diabetic rats showed a better proliferative response to PHA or ConA than those obtained from non-treated diabetic rats (P<0.05). Glycine-treated rats had a less intense corporal weight loss in comparison with non-treated animals. Our results suggest that administration of glycine attenuates the diabetic complications in the STZ-induced diabetic rat model, probably due to inhibition of the non-enzymatic glycation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号