首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus PSEUDOMONAS: Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.  相似文献   

2.
Cryptic structure of species complexes confounds an accurate accounting of biological diversity in natural systems. Also, cryptic sibling species often become specialized to different ecological conditions, for instance, with host specialization by cryptic parasite species. The fungus Microbotryum violaceum causes anther smut disease in plants of Caryophyllaceae, and the degree of specialization and gene flow between strains on different hosts have been controversial in the literature. We conducted molecular phylogenetic analyses on M. violaceum from 23 host species and different geographic origins using three single-copy nuclear genes (beta-tub, gamma-tub, and Ef1alpha). Congruence between the phylogenies identified several lineages that evolved independently for a long time. The lineages had overlapping geographic ranges but were highly specialized on different hosts. These results thus suggest that M. violaceum is a complex of highly specialized sibling species. Two incongruencies between the individual gene phylogenies and one intragene recombination event were detected at basal nodes, suggesting ancient introgression events or speciation events via hybridizations. However, incongruencies and recombination were not detected among terminal branches, indicating that the potentials for cross-infection and experimental hybridization are often not sufficient to suggest that introgressions would likely persist in nature.  相似文献   

3.
The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.  相似文献   

4.
Horizontal gene transfer (HGT) has appeared to be of importance for prokaryotic species evolution. As a consequence numerous parametric methods, using only the information embedded in the genomes, have been designed to detect HGTs. Numerous reports of incongruencies in results of the different methods applied to the same genomes were published. The use of artificial genomes in which all HGT parameters are controlled allows testing different methods in the same conditions. The results of this benchmark concerning 16 representative parametric methods showed a great variety of efficiencies. Some methods work very poorly whatever the type of HGTs and some depend on the conditions or on the metrics used. The best methods in terms of total errors were those using tetranucleotides as criterion for the window methods or those using codon usage for gene based methods and the Kullback-Leibler divergence metric. Window methods are very sensitive but less specific and detect badly lone isolated gene. On the other hand gene based methods are often very specific but lack of sensitivity. We propose using two methods in combination to get the best of each category, a gene based one for specificity and a window based one for sensitivity.  相似文献   

5.
Reports of cationic antimicrobial peptides (CAPs) have become standard fare in research literature. But with several hundred peptides described to date, the investigator who tries to navigate the proposed models of their activity is only treated to a generous serving of incongruencies. Rather than acting in isolation as antimicrobial molecules, CAPs also may synergize with other molecules of innate immunity and modulate both innate and adaptive immune systems, thus providing a link between the various mechanisms that result in host protection.  相似文献   

6.
Cichlid fishes of the east African Great Lakes represent a paradigm of adaptive radiation. We conducted a phylogenetic analysis of cichlids including pan-African and west African species by using insertion patterns of short interspersed elements (SINEs) at orthologous loci. The monophyly of the east African cichlids was consistently supported by seven independent insertions of SINE sequences that are uniquely shared by these species. In addition, data from four other loci indicated that the genera Tilapia (pan-African) and Steatocranus (west African) are the closest relatives to east African cichlids. However, relationships among Tilapia, Steatocranus, and the east African clade were ambiguous because of incongruencies among topologies suggested by insertion patterns of SINEs at six other loci. One plausible explanation for this phenomenon is incomplete lineage sorting of alleles containing or missing a SINE insertion at these loci during ancestral speciation. Such incomplete sorting may have taken place earlier than 14 MYA, followed by random and stochastic fixation of the alleles in subsequent lineages. These observations prompted us to consider the possibility that cichlid speciation occurred at an accelerated rate during this period when the African Great Lakes did not exist. The SINE method could be useful for detecting ancient exclusive speciation events that tend to remain hidden during conventional sequence analyses because of accumulated point mutations.  相似文献   

7.
Betulaceae is a well‐defined family of Fagales, including six living genera and more than 160 modern species. Species of the family have high ecological and economic value for the abundant production of wood. However, phylogenetic relationships within Betulaceae have remained partly unresolved, likely due to the lack of a sufficient number of informative sites used in previous studies. Here, we re‐investigate the Betulaceae phylogeny with whole chloroplast genomes from 24 species (17 newly assembled), representing all genera of the family. All the 24 plastomes are relatively conserved with four regions, and each genome is ∼158–161 kb long, with 111 genes. The six genera are all monophyletic in the plastome tree, whereas Ostrya Scop. is nested in the Carpinus clade in the internal transcribed spacer tree. Further incongruencies are also detected within some genera between species. Incomplete lineage sorting and/or hybrid introgression during the diversification of the family could account for such incongruencies. Our dating analysis, based on four fossils, suggests that the most recent common ancestors of the extant genera date back to the mid‐ to late Miocene, and confirms that Betulaceae started to diversify in the upper Cretaceous/early Paleocene. Our results highlight the significance of using more informative sites in resolving phylogenetic relationships. Plastome data and increased taxon sampling will help to better understand the evolutionary history of Betulaceae in the future.  相似文献   

8.
Lake Tanganyika harbors numerous endemic species of extremely diverse cichlid fish that have been classified into 12 major taxonomic groups known as tribes. Analysis of short interspersed element (SINE) insertion data has been acknowledged to be a powerful tool for the elucidation of phylogenetic relationships, and we applied this method in an attempt to clarify such relationships among these cichlids. We studied insertion patterns of 38 SINEs in total, 24 of which supported the monophyly of three clades. The other 14 loci revealed extensive incongruence in terms of the patterns of SINE insertions. These incongruencies most likely stem from a period of adaptive radiation. One possible explanation for this phenomenon is the extensive incomplete lineage sorting of alleles for the presence or absence of a SINE during successive speciation events which took place about 5-10 MYA. The present study is the first to report the successful application of the SINE method in demonstrating the existence of such possible "ancient" incomplete lineage sorting. We discuss the possibility that it might potentially be very difficult to resolve the species phylogeny of a group that radiated explosively, even by resolving the genealogies of more than 10 nuclear loci, as a consequence of incomplete lineage sorting during speciation.  相似文献   

9.
Parsimony analysis of characters derived from an electrophoretic survey of allozyme variation in the sceloporine sand lizards indicates that Uma is outside of a clade formed by the rest of the sand lizards and that Cophosaurus and Holbrookia share a more recent common ancestor with one another than either does with Callisaurus. Previous electrophoretic studies used phenetic clustering based on genetic distance data to assess relationships among these taxa. The resulting dendrograms were used to argue that Holbrookia is the sister group of all other sand lizards and that Callisaurus and Cophosaurus are sister taxa. When reanalysed using parsimony methods, the data from these previous studies are found to support the conclusions of the present study, namely, that Uma rather than Holbrookia is the sister group of all other sand lizards and that Cophosaurus is the sister taxon of Holbrookia rather than of Callisaurus. Relative rate tests indicate that the incongruencies between branching diagrams derived from phenetic clustering of genetic distances versus those derived from parsimony analysis of electrophoretic characters are attributable to increased rates of protein evolution in the Holbrookia lineage.  相似文献   

10.
Phylogenetic relationships and levels of geographic differentiation of two closely related bipolar taxa, Cladonia arbuscula and Cladonia mitis, were cladistically examined with ITS regions, SSU rDNA introns, partial beta-tubulin, and partial glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes. In the combined analysis of the four genes, C. arbuscula was paraphyletic, while C. mitis, nested within C. arbuscula, formed a strongly supported monophyletic group. C. arbuscula samples were divided into three separate clades: "arbuscula I," appearing as basal to the other ingroup taxa, "arbuscula II," and "arbuscula III" (the latter represented by only one specimen), which were not correlated with any morphological trait. Only C. mitis specimens formed a morphologically and chemically distinct group. None of the main clades was correlated with geographic origin. The separate analyses were poorly resolved, and in most cases samples from "arbuscula I," "arbuscula II," and "arbuscula III" clades were intermixed. An incongruence test revealed conflict among the four gene regions in almost all cases. Only ITS regions and introns were not significantly incongruent, suggesting lack of recombination within the ribosomal DNA locus. Incomplete lineage sorting and recombination were considered to be the main reasons accounting for the incongruencies. The high proportion of shared polymorphisms between the "arbuscula I" and "arbuscula II" clades, especially found from the beta-tubulin gene and from the ITS regions, and the lack of corroborating morphological characters both indicate a short history of reproductive isolation among the groups. The lack of genetic differentiation among the northern and southern samples within the main clades indicates a relatively recent gene flow, which may have resulted from migrations during the Pleistocene glaciations or from more recent long-distance dispersal.  相似文献   

11.
Phylogenetic relationships for Hieracium subgen. Pilosella were inferred from chloroplast (trnT-trnL, matK) and nuclear (ITS) sequence data. Chloroplast markers revealed the existence of two divergent haplotype groups within the subgenus that did not correspond to presumed relationships. Furthermore, chloroplast haplotypes of the genera Hispidella and Andryala nested each within one of these groups. In contrast, ITS data were generally in accord with morphology and other evidence and were therefore assumed to reflect the true phylogeny. They revealed a sister relationship between Pilosella and Hispidella and a joint clade of Hieracium subgenera Hieracium and Chionoracium (Stenotheca) while genus Andryala represented a third major lineage of the final ingroup cluster. Detailed analysis of trnT-trnL character state evolution along the ITS tree suggested two intergeneric hybridization events between ancestral lineages that resulted in cytoplasmic transfer (from Hieracium/Chionoracium to Pilosella, and from the introgressed Pilosella lineage to Andryala). These chloroplast capture events, the first of which involved a now extinct haplotype, are the most likely explanation for the observed incongruencies between plastid and nuclear DNA markers.  相似文献   

12.
Molecular phylogenetic relationships among 45 members of the Helicoidea (Gastropoda: Stylommatophora) were examined using partial mitochondrial 16S rRNA sequences. Phylogenetic relationships were inferred using maximum parsimony, maximum likelihood and Bayesian methods. The reconstructed phylogenies showed a good degree of support for more recent branches, but gave little support to deeper nodes. Mitochondrial rDNA data further confirmed monophyletic status of helicids, recognized monachine hygromiid and bradybaenid clades and resolved a number of relationships in the helicelline hygromiids. With the respect to the latter assemblage, most of the anatomically based groups are confirmed, corroborating the diagnostic value of the dart-sac complex and a close affinity between Ichnusomunda sacchii and species of the genus Cernuella . Nevertheless, some well resolved branches challenge previous systematic arrangements, grouping species previously placed in different arrangements. In particular, support was not found for the monophyly of helicelline hygromiids with pedal penial innervation. Possible explanations for these incongruencies are suggested. 16S sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient radiations in the Helicoidea. It will be valuable to combine the 16S data with other gene sequences to estimate basal relationships.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 501–512.  相似文献   

13.
Not a single agent is known to cause an increase of genetic disorders in humans. Even studies on large numbers of children born to parents after exposure to ionizing radiation or DNA alkylating agents failed to detect significant genetic consequences. This is in contrast to effects observed in human somatic cells or germ cells, and to various investigations with laboratory animals. A definite explanation of these discrepancies does not exist. Nevertheless, on the basis of the currently available human data it cannot be justified to advise a previously exposed person against having children, if this individual is otherwise healthy. There are obvious incongruencies between the potency of an agent to cause mutations at all, and to induce genetic effects in the offspring. It should therefore be emphasized that a regulatory classification of agents according to a potential genetic hazard in man must not solely be based on in vitro mutagenicity data.  相似文献   

14.
BACKGROUND: Wolbachia and Cardinium are endosymbiotic bacteria infecting many arthropods and manipulating host reproduction. Although these bacteria are maternally transmitted, incongruencies between phylogenies of host and parasite suggest an additional role for occasional horizontal transmission. Consistent with this view is the strong evidence for recombination in Wolbachia, although it is less clear to what extent recombination drives diversification within single host species and genera. Furthermore, little is known concerning the population structures of other insect endosymbionts which co-infect with Wolbachia, such as Cardinium. Here, we explore Wolbachia and Cardinium strain diversity within nine spider mite species (Tetranychidae) from 38 populations, and quantify the contribution of recombination compared to point mutation in generating Wolbachia diversity. RESULTS: We found a high level of genetic diversity for Wolbachia, with 36 unique strains detected (64 investigated mite individuals). Sequence data from four Wolbachia genes suggest that new alleles are 7.5 to 11 times more likely to be generated by recombination than point mutation. Consistent with previous reports on more diverse host samples, our data did not reveal evidence for co-evolution of Wolbachia with its host. Cardinium was less frequently found in the mites, but also showed a high level of diversity, with eight unique strains detected in 15 individuals on the basis of only two genes. A lack of congruence among host and Cardinium phylogenies was observed. CONCLUSIONS: We found a high rate of recombination for Wolbachia strains obtained from host species of the spider mite family Tetranychidae, comparable to rates found for horizontally transmitted bacteria. This suggests frequent horizontal transmission of Wolbachia and/or frequent horizontal transfer of single genes. Our findings strengthens earlier reports of recombination for Wolbachia, and shows that high recombination rates are also present on strains from a restrictive host range. Cardinium was found co-infecting several spider mite species, and phylogenetic comparisons suggest also horizontal transmission of Cardinium among hosts.  相似文献   

15.
Sequence-based phylogenetic analyses typically are based on a small number of character sets and report gene trees which may not reflect the true species tree. We employed an EST mining strategy to suppress such incongruencies, and recovered the most robust phylogeny for five species of plant-parasitic nematode (Meloidogyne arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica), three closely related tylenchid taxa (Heterodera glycines, Globodera pallida, and G. rostochiensis) and a distant taxon, Caenorhabditis elegans. Our multiple-gene approach is based on sampling more than 80,000 publicly available tylenchid EST sequences to identify phylum-wide orthologues. Bayesian inference, minimum evolution, maximum likelihood and protein distance methods were employed for phylogenetic reconstruction and hypothesis tests were constructed to elucidate differential selective pressures across the phylogeny for each gene. Our results place M. incognita and M. javanica as sister taxa, with M. arenaria as the next closely related nematode. Significant differences in selective pressure were revealed for some genes under some hypotheses, though all but one gene are exclusively under purifying selection, indicating conservation across the orthologous groups. This EST-based multi-gene analysis is a first step towards accomplishing genome-wide coverage for tylenchid evolutionary analyses.  相似文献   

16.
The mxaF gene, coding for the large (α) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera. This study examined the potential for using the mxaF gene as a functional and phylogenetic marker for methanotrophs. mxaF and 16S rRNA gene phylogenies were constructed based on over 100 database sequences of known proteobacterial methanotrophs and other methylotrophs to assess their evolutionary histories. Topology tests revealed that mxaF and 16S rDNA genes of methanotrophs do not show congruent evolutionary histories, with incongruencies in methanotrophic taxa in the Methylococcaceae, Methylocystaceae, and Beijerinckiacea. However, known methanotrophs generally formed coherent clades based on mxaF gene sequences, allowing for phylogenetic discrimination of major taxa. This feature highlights the mxaF gene’s usefulness as a biomarker in studying the molecular diversity of proteobacterial methanotrophs in nature. To verify this, PCR-directed assays targeting this gene were used to detect novel methanotrophs from diverse environments including soil, peatland, hydrothermal vent mussel tissues, and methanotroph isolates. The placement of the majority of environmental mxaF gene sequences in distinct methanotroph-specific clades (Methylocystaceae and Methylococcaceae) detected in this study supports the use of mxaF as a biomarker for methanotrophic proteobacteria.  相似文献   

17.
The morphology of the abdominal defensive glands and associated structures of 115 species of tenebrionid beetles was studied on KOH cleared material. The glands and reservoirs of all Tenebrionidae are homologous and evolved as a pair of sacs from the intersegmental membrane between sternites VII and VIII. On the basis of reservoir morphology and secretory cell tubule termination, seven provisional gland types were established. Several of the types include species from several tribes, and several tribes contain several gland types, indicating possible incongruencies between the taxonomy and phylogeny of the family. Morphological trends in the evolution of the glands include: increase of reservoir capacity, constriction of the proximal portion of the sacs into distinct exit ducts, release of secretion by exuding or spraying rather than everting, and concentration of the secretory cell tubule terminations into restricted fields, collecting ducts or ampullae. The morphology of the glands of 58 species is illustrated and the results are discussed in light of the current taxonomy of the Tenebrionidae.  相似文献   

18.
Protein Interaction VisualizatiOn Tool (PIVOT) is a visualization tool for protein-protein interactions. It allows the user to create personal data sets of interactions by combining information from private and public data sources. The user can gradually access the interactions' data using a clear interactive map that is focused on the researcher's protein of interest, and is reshaped and expanded in response to his/her queries. It also offers several visual enhancements and intelligent queries that help the user efficiently study it. PIVOT allows the user to search the interactions data set for paths connecting proteins that are expected to co-operate. The user can also employ PIVOT to predict unknown interactions among proteins, based on interactions among their homologous proteins in other species.  相似文献   

19.
Molecular codes can be considered a special type of mapping among molecular species in biochemical systems. The formalization of molecular codes allows to identify these in network models of real world systems. Analyzing algorithmically identified codes leads to the observation that codes does not necessarily stand alone, but that we can identify certain relations among codes. In this paper I will define two types of relations that can occur among codes, (1) code linkage and (2) code nesting, and will discuss implications of this finding.  相似文献   

20.
Rock-dwelling gastropods are usually patchily distributed in limestone habitats, presumably have low active and passive dispersal ability and often represent narrow-ranged endemic taxa. Their current taxonomy is predominantly shell morphology based, and it remains unknown whether the morphologically differentiated and geographically separated populations represent phylogenetic clades. In this study, we analysed the hyperdiverse, terrestrial door snail genus Montenegrina. Based on the current taxonomy defined by shell morphology, it contains 29 species and 106 subspecies distributed in the Balkan region. The constructed phylogenetic tree using three mitochondrial markers was used to test whether it agrees with the current taxonomy. In this comprehensive tree, about half of the species and subspecies are monophyletic. Some of the paraphylies could be reasonably resolved by taxonomic changes; that is, some subspecies should be reassigned or raised to species level. Other incongruencies probably arose due to introgression even between distant clades. The histone genes turned out to be unsuitable for elucidating the phylogeny of Montenegrina. In the species-delimitation tests, considerably more molecular operational taxonomic units were delimited than the number of presently described species. The present data indicate that (a) shell morphology-based taxonomy and taxon recognition can be problematic in such a large and morphologically highly variable genus; (b) the potential error due to incomplete sampling presents a problem in a genus as variable as Montenegrina; (c) multi-locus analyses should be conducted to arrive at a better basis for species delimitation; and (d) integrative approaches including genetic as well as morphological/anatomical data from a comprehensive geographic sample are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号