首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The effect of ectomycorrhizal Pisolithus tinctorius (Pt) infection was studied on the growth and photosynthetic characteristics of Pinus densiflora seedlings grown at ambient (360 µmol mol−1, AC) and elevated (720 µmol mol−1, EC) CO2 concentrations. After 18 weeks, Pt inoculation had led to significantly increased dry mass and stem diameter of P. densiflora at both CO2 concentrations, relative to non-inoculated seedlings. Moreover, EC significantly increased the ectomycorrhizal development. The phosphate content in needles inoculated with Pt was about three times higher than without inoculation at both CO2 concentrations. The PAR saturated net photosynthetic rates (P sat) of P. densiflora inoculated with Pt were clearly higher than for control seedlings at both CO2 concentrations, and the maximum net photosynthetic rate (P N) at saturated CO2 concentration (P max) was higher than in controls. Moreover, the carboxylation efficiency (CE) and RuBP regeneration rate of the P N/C i curve for P. densiflora inoculated with Pt were significantly higher than for non-inoculated seedlings at both CO2 concentrations, especially at EC. The water use efficiency (WUE) of seedlings inoculated with Pt grown at EC was significantly raised. Allocation of photosynthates to roots was greater in Pt inoculated pine seedlings, because of the enhanced activity of ectomycorrhiza associated with seedlings at EC. Moreover, P N of non-inoculated seedlings grown for 18 weeks at EC tended to be down regulated; in contrast, Pt inoculated seedlings showed no down-regulation at EC. The activity of ectomycorrhiza may therefore be enhanced physiological function related to water and phosphate absorption in P. densiflora seedlings at EC.This study was partly sponsored by the Ministry of Education, Sport, Culture, Science and Technology of Japan (RR2002, Basic Research B and Sprout study).  相似文献   

2.
The effects of nitrogen [75 and 150 kg (N) ha−1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol−1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting.  相似文献   

3.
4.
Quercus ilex plants grown on two different substrates, sand soil (C) and compost (CG), were exposed to photosynthetic photon flux densities (PPFD) at 390 and 800 μmol(CO2) mol−1 (C390 and C800). At C800 both C and CG plants showed a significant increase of net photosynthetic rate (P N) and electron transport rate (ETR) in response to PPFD increase as compared to C390. In addition, at C800 lower non-photochemical quenching (NPQ) values were observed. The differences between C390 and C800 were related to PPFD. The higher P N and ETR and the lower dissipative processes found in CG plants at both CO2 concentrations as compared to C plants suggest that substrate influences significantly photosynthetic response of Q. ilex plants. Moreover, short-term exposures at elevated CO2 decreased nitrate photo-assimilation in leaves independently from substrate of growth.  相似文献   

5.
We determined the interactive effects of irradiance, elevated CO2 concentration (EC), and temperature in carrot (Daucus carota var. sativus). Plants of the cv. Red Core Chantenay (RCC) were grown in a controlled environmental plant growth room and exposed to 3 levels of photosynthetically active radiation (PAR) (400, 800, 1 200 μmol m−2 s−1), 3 leaf chamber temperatures (15, 20, 30 °C), and 2 external CO2 concentrations (C a), AC and EC (350 and 750 μmol mol−1, respectively). Rates of net photosynthesis (P N) and transpiration (E) and stomatal conductance (g s ) were measured, along with water use efficiency (WUE) and ratio of internal and external CO2 concentrations (C i/C a). P N revealed an interactive effect between PAR and C a. As PAR increased so did P N under both C a regimes. The g s showed no interactive effects between the three parameters but had singular effects of temperature and PAR. E was strongly influenced by the combination of PAR and temperature. WUE was interactively affected by all three parameters. Maximum WUE occurred at 15 °C and 1 200 μmol m−2 s− 1 PAR under EC. The C i /C a was influenced independently by temperature and C a. Hence photosynthetic responses are interactively affected by changes in irradiance, external CO2 concentration, and temperature. EC significantly compensates the inhibitory effects of high temperature and irradiance on P N and WUE.  相似文献   

6.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

7.
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C a) on ecosystems, it is essential to determine the combined effects of drought and elevated C a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on leaf P N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought. Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon.  相似文献   

8.
Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus × euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm−2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (g s, μmol m−2 s−1), photosynthetic CO2 fixation (A, mmol m−2 s−1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], g s was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.  相似文献   

9.
Bernacchi CJ  Morgan PB  Ort DR  Long SP 《Planta》2005,220(3):434-446
Down-regulation of light-saturated photosynthesis (Asat) at elevated atmospheric CO2 concentration, [CO2], has been demonstrated for many C3 species and is often associated with inability to utilize additional photosynthate and/or nitrogen limitation. In soybean, a nitrogen-fixing species, both limitations are less likely than in crops lacking an N-fixing symbiont. Prior studies have used controlled environment or field enclosures where the artificial environment can modify responses to [CO2]. A soybean free air [CO2] enrichment (FACE) facility has provided the first opportunity to analyze the effects of elevated [CO2] on photosynthesis under fully open-air conditions. Potential ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (Vc,max) and electron transport through photosystem II (Jmax) were determined from the responses of Asat to intercellular [CO2] (Ci) throughout two growing seasons. Mesophyll conductance to CO2 (gm) was determined from the responses of Asat and whole chain electron transport (J) to light. Elevated [CO2] increased Asat by 15–20% even though there was a small, statistically significant, decrease in Vc,max. This differs from previous studies in that Vc,max/Jmax decreased, inferring a shift in resource investment away from Rubisco. This raised the Ci at which the transition from Rubisco-limited to ribulose-1,5-bisphosphate regeneration-limited photosynthesis occurred. The decrease in Vc,max was not the result of a change in gm, which was unchanged by elevated [CO2]. This first analysis of limitations to soybean photosynthesis under fully open-air conditions reveals important differences to prior studies that have used enclosures to elevate [CO2], most significantly a smaller response of Asat and an apparent shift in resources away from Rubisco relative to capacity for electron transport.Abbreviations FACE Free air [CO2] enrichment - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP Ribulose-1,5-bisphosphate - SoyFACE Soybean free air [CO2] enrichment - VPD Vapor pressure deficit  相似文献   

10.
The effects of salinity (sea water at 0 ‰ versus 30 ‰) on gross rates of O2 evolution (J O2) and net rates of CO2 uptake (P N) were measured in the halotolerant estuarine C4 grasses Spartina patens, S. alterniflora, S. densiflora, and Distichlis spicata in controlled growth environments. Under high irradiance, salinity had no significant effect on the intercellular to ambient CO2 concentration ratio (C i/C a). However, during photosynthesis under limiting irradiance, the maximum quantum efficiency of CO2 fixation decreased under salinity across species, suggesting there is increased leakage of the CO2 delivered to the bundle sheath cells by the C4 pump. Growth under salinity did not affect the maximum intrinsic efficiency of photosystem 2, PS2 (FV/FM) in these species, suggesting salinity had no effect on photosynthesis by inactivation of PS2 reaction centers. Under saline conditions and high irradiance, P N was reduced by 75 % in Spartina patens and S. alterniflora, whereas salinity had no effect on P N in S. densiflora or D. spicata. This inhibition of P N in S. patens and S. alterniflora was not due to an effect on stomatal conductance since the ratio of C i/C a did not decrease under saline conditions. In growth with and without salt, P N was saturated at ∼500 μmol(quantum) m−2 s−1 while J O2 continued to increase up to full sunlight, indicating that carbon assimilation was not tightly coupled to photochemistry in these halophytic species. This increase in alternative electron flow under high irradiance might be an inherent function in these halophytes for dissipating excess energy.  相似文献   

11.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

12.
Wood structure might be altered through the physiological responses to atmospheric carbon dioxide concentration ([CO2]) and nitrogen (N) deposition. We investigated growth, water relations and wood structure of 1-year-old seedlings of two deciduous broad-leaved tree species, Quercus mongolica (oak, a ring-porous species) and Alnus hirsuta (alder, a diffuse-porous species and N2–fixer), grown under a factorial combination of two levels of [CO2] (36 and 72 Pa) and nitrogen supply (N; low and high) for 141 days in phytotron chambers. In oak, there was no significant effect of [CO2] on wood structure, although elevated [CO2] tended to decrease stomatal conductance (g s) and increased water use efficiency regardless of the N treatment. However, high N supply increased root biomass and induced wider earlywood and larger vessels in the secondary xylem in stems, leading to increased hydraulic conductance. In alder, there was significant interactive effect of [CO2] and N on vessel density, and high N supply increased the mean vessel area. Our results suggest that wood structures related to water transport were not markedly altered, although elevated [CO2] induced changes in physiological parameters such as g s and biomass allocation, and that N fertilization had more pronounced effects on non-N2-fixing oak than on N2-fixing alder.  相似文献   

13.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

14.
This study reports survival and physiological responses of micropropagated Ceratonia siliqua L. cvs. Galhosa and Mulata plants during ex vitro acclimatization under ambient (AC; 330 mol mol–1) or elevated (EC; 810 mol mol–1) CO2 concentration and a photosynthetic photon flux density of 125 mol m–2 s–1. CO2 enrichment during acclimatization did not improve survival rate that was around 80 % for both treatments. Eight weeks after ex vitro transplantation, photosynthetic capacity and apparent quantum yield in acclimatized leaves were higher in comparison with those in in vitro-grown leaves, without any significant difference between CO2 treatments. Chlorophyll content increased after acclimatization. However, EC led to a decrease in the total amount of chlorophyll in new leaves of both cultivars, compared to those grown at AC. Soluble sugars and starch contents were not markedly affected by growth EC, although starch had significantly increased after transfer to ex vitro conditions. EC induced an increase in the stem elongation and in the effective life of leaves, and a decrease in the number of new leaves.  相似文献   

15.
Bunce  J.A.  Sicher  R.C. 《Photosynthetica》2001,39(1):95-101
Midday measurements of single leaf gas exchange rates of upper canopy leaves of soybeans grown in the field at 350 (AC) and 700 (EC) µmol(CO2) mol–1 in open topped chambers sometimes indicated up to 50 % higher net photosynthetic rates (P N) measured at EC in plants grown at AC compared to EC. On other days mean P N were nearly identical in the two growth [CO2] treatments. There was no seasonal pattern to the variable photosynthetic responses of soybean to growth [CO2]. Even on days with significantly lower P N in the plants grown at EC, there was no reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase, chlorophyll, or soluble protein contents per unit of leaf area. Over three years, gas exchange evidence of acclimation occurred on days when either soil was dry or the water vapor pressure deficit was high (n = 12 d) and did not occur on days after rain or on days with low water vapor pressure deficit (n = 9 d). On days when photosynthetic acclimation was evident, midday leaf water potentials were consistently 0.2 to 0.3 MPa lower for the plants grown at EC than at AC. This suggested that greater susceptibility to water stress in plants grown at EC cause the apparent photosynthetic acclimation. In other experiments, plants were grown in well-watered pots in field chambers and removed to the laboratory early in the morning for gas exchange measurements. In these experiments, the amount of photosynthetic acclimation evident in the gas exchange measurements increased with the maximum water vapor pressure deficit on the day prior to the measurements, indicating a lag in the recovery of photosynthesis from water stress. The apparent increase in susceptibility to water stress in soybean plants grown at EC is opposite to that observed in some other species, where photosynthetic acclimation was evident under wet but not dry conditions, and may be related to the observation that hydraulic conductance is reduced in soybeans when grown at EC. The day-to-day variation in photosynthetic acclimation observed here may account for some of the conflicting results in the literature concerning the existence of acclimation to EC in field-grown plants.  相似文献   

16.
Net photosynthetic rate (P N) measured at the same CO2 concentration, the maximum in vivo carboxylation rate, and contents of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPCO) and RuBPCO activase were significantly decreased, but the maximum in vivo electron transport rate and RuBP content had no significant change in CO2-enriched [EC, about 200 μmol mol−1 above the ambient CO2 concentration (AC)] wheat leaves compared with those in AC grown wheat leaves. Hence photosynthetic acclimation in wheat leaves to EC is largely due to RuBP carboxylation limitation.  相似文献   

17.
A controlled growth chamber experiment was conducted to investigate the short-term water use and photosynthetic responses of 30-d-old carrot seedlings to the combined effects of CO2 concentration (50–1 050 μmol mol−1) and moisture deficits (−5, −30, −55, and −70 kPa). The photosynthetic response data was fitted to a non-rectangular hyperbola model. The estimated parameters were compared for effects of moisture deficit and elevated CO2 concentration (EC). The carboxylation efficiency (α) increased in response to mild moisture stress (−30 kPa) under EC when compared to the unstressed control. However, moderate (−55 kPa) and extreme (−70 kPa) moisture deficits reduced α under EC. Maximum net photosynthetic rate (P Nmax) did not differ between mild water deficit and unstressed controls under EC. Moderate and extreme moisture deficits reduced P Nmax by nearly 85 % compared to controls. Dark respiration rate (R D) showed no consistent response to moisture deficit. The CO2 compensation concentration (Γ) was 324 μmol mol−1 for −75 kPa and ranged 63–93 μmol mol−1 for other moisture regimes. Interaction between moisture deficit and EC was noticed for P N, ratio of intercellular and ambient CO2 concentration (C i/C a), stomatal conductance (g s ), and transpiration rate (E). P N was maximum and C i/C a was minimum at −30 kPa moisture deficit and at C a of 350 μmol mol−1. The g s and E showed an inverse relationship at all moisture deficit regimes and EC. Water use efficiency (WUE) increased with moisture deficit up to −55 kPa and declined thereafter. EC showed a positive influence towards sustaining P N and increasing WUE only under mild moisture stress, and no beneficial effects of EC were noticed at moderate or extreme moisture deficits.  相似文献   

18.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

19.
Summary Coconut (Cocos nucifera L.) plantlets grown in vitro often grow slowly when transferred to the field possibly, due to a limited photosynthetic capacity of in vitro-cultured plantlets, apparently caused by the sucrose added to growth medium causing negative feedback for photosynthesis. In this paper, we tested the hypothesis that high exogenous sucrose will decrease ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and photosynthesis resulting in limited ex vitro growth. Plantlets grown with high exogenous sucrose (90 gl−1) had reduced photosynthetic activity that resulted in a poor photosynthetic response to high levels of light and CO2. These plantlets also had low amounts of Rubisco protein, low Rubisco activity, and reduced growth despite showing high survival when transferred to the field. Decreasing the medium’s sucrose concentration from 90 to 22.5 gl−1 or 0 gl−1 resulted in increased photosynthetic response to light and CO2 along with increased Rubisco and phosphoenolpyruvate carboxylase (PEPC) activities and proteins. However, plantlets grown in vitro without exogenous sucrose died when transferred ex vitro, whereas those grown with intermediate exogenous sucrose showed intermediate photosynthetic response, high survival, fast growth, and ex vitro photosynthesis. Thus, exogenous sucrose at moderate concentration decreased photosynthesis but increased survival, suggesting that both in vitro photosynthesis and exogenous sucrose reserves contribute to field establisment and growth of coconut plantlets cultured in vitro.  相似文献   

20.
With untransformed rice cv. Kitaake as control, the characteristics of carbon assimilation and photoprotection of a transgenic rice line over-expressing maize phosphoenolpyruvate carboxylase (PEPC) were investigated. The PEPC activity in untransformed rice was low, but the activity was stimulated under high irradiance or photoinhibitory condition. PEPC in untransformed rice contributed by about 5–10 % to photosynthesis, as shown by the application of the specific inhibitor 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)propenoate (DCDP). When maize PEPC gene was introduced into rice, transgenic rice expressed high amount of maize PEPC protein and had high PEPC activity. Simultaneously, the activity of carbonic anhydrase (CA) transporting CO2 increased significantly. Thus the photosynthetic capacity increased greatly (50 %) under high CO2 supply. In CO2-free air, CO2 release in the leaf was less. In addition, PEPC transgenic rice was more tolerant to photoinhibition. Treating by NaF, an inhibitor of phosphatase, showed that in transgenic rice more phosphorylated light-harvesting chlorophyll a/b-binding complexes (LHC) moved to photosystem 1 (PS1) protecting thus PS2 from photo-damage. Simultaneously, the introduction of maize PEPC gene could activate or induce activities of the key enzymes scavenging active oxygen, such as superoxide dismutase (SOD) and peroxidase (POD). Hence higher PS2 photochemical efficiency and lower superoxygen anion (O2 ·−) generation and malonyldiadehyde (MDA) content under photoinhibition could improve protection from photo-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号