首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, in vitro anti-HIV activity and stability studies of the 5'-fluorophosphate derivative of 3'-azido-3'-deoxythymidine (AZT) are reported. The results support the hypothesis that this phosphorylated entity exerts its biological effect via the delivery of the corresponding 5'-mononucleotide through an enzymatic process. However, the antiviral evaluation in thymidine kinase-deficient CEM cells as well as the stability studies in culture medium and cell extract showed that this bioconversion is not specific to the intracellular medium. Attempts to improve the biological activity of mononucleoside 5'-fluorophosphates by the use of the S-pivaloyl-2-thioethyl (tBuSATE) group as biolabile phosphate protection are reported.  相似文献   

2.
Phospholipid conjugates of 3′-azido-3′-deoxythymidine (AZT) show activity against the human immunodeficiency virus (HIV) in vitro. In a previous report (K.Y. Hostetler, L.M. Stuhmiller, B.H.M. Lenting, H. van den Bosch and D.D. Richman (1991), J. Biol. Chem. 265, 6112–6117) the syntheses and anti-HIV activities of AZT mono- and diphosphate diglyceride have been described. We now report on the synthesis, characterization and biological activity of 3′-azido-3′-deoxythymidine triphosphate distearoylglycerol (AZTTP-DSG). The compound was prepared by the condensation of AZT diphosphate with distearoylphosphatidic acid morpholidate in anhydrous pyridine at room temperature and purified by means of high-performance liquid chromatography using a silica column. Characterization was performed with 31P-NMR and IR analyses and determination of the fatty acid, phosphorus and nucleoside content of the product. AZTTP-DSG inhibited HIV-1 replication in both CEM and HT4-6C cells at a level intermediate in potency between its mono- and diphosphate analogs. The IC50 values of AZTTP-DSG were 0.33 and 0.79 μM in these two cell lines, respectively. In addition, AZTTP-DSG was less toxic to CEM cells in vitro than the other AZT liponucleotides and reduced viable cell numbers in this cell type by 50% at 1000 μM. Initial studies on the metabolism of AZTTP-DSG revealed that both AZT and AZT monophosphate were liberated from the lipid pro-drug by a rat liver mitochondrial enzyme preparation. These phospholipid derivatives of AZT nucleotides represent pro-drugs for the intracellular delivery of phosphorylated antiviral nucleoside analogs.  相似文献   

3.
4.
In the present study, we obtained genetically manipulated nonneuronal cells which synthesize a catecholamine precursor for future use in intracerebral grafting. Human type 1 tyrosine hydroxylase (TH; EC 1.14.16.2) cDNA was inserted into eukaryotic expression vector pKCRH2 and was co-transfected into C6 cells with plasmid pSV2neo. Expression of the TH minigene was screened by immuno-histochemical staining with TH antibody and immunoblot-ting analysis. Several clones of the C6 transfectahts that produce TH molecules were obtained. These cells showed TH activity, and the product, L-3,4-dihydroxyphenylalanine (L-DOPA), was detected intracellulary due to the ajbsence of L-amino acid decarboxylase (EC 4.1.1.28) activity. It was found that a large amount of L-DOPA was released from the cells into the culture medium. These transfectants were transplanted into rat brain, and the expression of TH was examined immunohistochemically. On the 10th day following transplantation, a mass of C6 cells which was heavily stained with TH antibody was observed in the brain. These findings may provide us with an opportunity to investigate the effects of intracerebral transplantation of nonneuronal cells that produce catecholamine or its precursor.  相似文献   

5.
Novel nucleoside-Cinchona alkaloid conjugates were synthesized using ‘click’ chemistry approach based on the copper(I) catalyzed Huisgen azide-alkyne cycloaddition. Two series of conjugates were prepared employing 3′-azido-3′-deoxythymidine (AZT) as the azide component and the four 10,11-didehydro Cinchona alkaloids as well as their 9-O-propargyl ethers as the alkyne components. All obtained conjugates showed strong fluorescence emission and some of them exhibited marked cytotoxic activity in vitro.  相似文献   

6.
Abstract: A chemical assay of tyrosine (Tyr) in nervous tissue is described. The method is based on a rapidly performed isolation of Tyr on small Sephadex G 10 columns, followed by reverse-phase HPLC in conjunction with amperometric detection. The method permitted the additional quantification of 3,4-dihydroxyphenylalanine, dopamine (DA), and its acidic metabolites. The method was applied to a study of the effects of γ-butyrolactone, haloperidol, haloperidol in combination with amfonelic acid, morphine, NSD 1015, and tyrosine methylester on the concentration of Tyr in the striatum, frontal cortex, hypothalamus, and cerebellum of rat brain. The effect of tyrosine methylester on DA and its acidic metabolites was investigated in the striatum and frontal cortex. Morphine and NSD 1015 were found to increase Tyr levels. γ-Butyrolactone, haloperidol, and haloperidol combined with amfonelic acid decreased the Tyr content in a manner related to their stimulatory effect on DA biosynthesis. These effects were restricted to DA-rich brain areas. It was concluded that during conditions of increased DA biosynthesis, the Tyr pool still possesses a considerable reserve capacity. The results bring into question the concept that brain Tyr is an important additional factor controlling catechol synthesis during increased tyrosine hydroxylase activity.  相似文献   

7.
The question of the existence of a p-tyrosine decarboxylase pathway for the formation of p-tyramine in mammalian tissues remains unresolved. Development of a sensitive and specific assay for p-tyrosine decarboxylase has permitted demonstration of this activity in rat tissues and human kidney. Tyrosine decarboxylase was purified to electrophoretic homogeneity by pH 5.0 precipitation, ammonium sulfate precipitation, gel filtration, phenyl-Sepharose chromatography, DEAE-Sephacel chromatography, and preparative isoelectric focusing. A specific rabbit antiserum to tyrosine decarboxylase was also obtained. Purified tyrosine decarboxylase possessed a narrow pH dependency with an optimum at 8.0. Benzene and certain other organic solvents dramatically stimulated tyrosine decarboxylase activity of purified enzyme. Purified tyrosine decarboxylase activity also decarboxylated L-DOPA, 5-hydroxytryptophan, 3,4-dihydroxyphenylserine, o-tyrosine, m-tyrosine, phenylalanine, histidine, and tryptophan, which suggested that the purified enzyme was aromatic L-amino acid decarboxylase. This conclusion was supported by a constant ratio of 5-hydroxytryptophan decarboxylase to tyrosine decarboxylase throughout the purification scheme and by parallel immunoprecipitation of decarboxylase activities by the specific antityrosine decarboxylase antisera. Thus, we report that p-tyrosine is decarboxylated by aromatic L-amino acid decarboxylase and that this metabolic transformation may be an important source of p-tyramine in mammalian tissues. In conclusion, neuronal tissues that synthesize catecholamines or serotonin should now be considered capable of synthesizing p-tyramine and other biogenic amines.  相似文献   

8.
Abstract: We have investigated three aspects of the relationship between calcium and tyrosine hydroxylase activity in rat striatum. In the first series of experiments, we examined the hypothesis that the rise in dopamine synthesis during increased impulse flow results from a calcium-induced activation of tyrosine hydroxylase. Calcium (12.5–200 μ M ) had no effect when added to crude enzyme or enzyme partially purified by gel filtration. Moreover, incubation of synaptosomes with excess calcium (up to 3.5 m M ) had little or no effect on dopamine synthesis. Incubation with the depolarizing alkaloid veratridine (75 μ M ) did increase dopamine synthesis, but did not alter the activity of tyrosine hydroxylase subsequently prepared from the synaptosomes, despite the presumed rise in intracellular calcium. In the second series we examined the hypothesis that increased dopamine synthesis after axotomy results from activation of tyrosine hydroxylase owing to a decrease in intracellular calcium. Addition of the calcium chelator EGTA (100 μ M ) to crude or partially purified enzyme was without effect, whereas incubation of synaptosomes with EGTA (500 μM ) decreased cell-free enzyme activity. In the third experimental series we examined the relationship between calcium and activation of tyrosine hydroxylase by dibutyryl cyclic AMP. EGTA failed to alter the increase in the activity of tyrosine hydroxylase prepared from synaptosomes incubated with dibutyryl cyclic AMP. However, it blocked the increase in synaptosomal dopamine synthesis and dopamine content normally produced by the cyclic AMP analogue. Thus, tyrosine hydroxylase does not appear to be activated by either increases or decreases in calcium availability. However, calcium may be important for the maintenance of basal tyrosine hydroxylase activity, and may play an indirect role in the expression of tyrosine hydroxylase activation produced by other means.  相似文献   

9.
Abstract— Growth factors stimulate cellular protein synthesis, but the intracellular signaling mechanisms that regulate initiation of mRNA translation in neurons have not been clarified. A rate-limiting step in the initiation of protein synthesis is the formation of the ternary complex among GTP, eukaryotic initiation factor 2 (elF-2), and the initiator tRNA. Here we report that genistein, a specific tyrosine kinase inhibitor, decreases tyrosine kinase activity and the content of phosphotyrosine proteins in cultured primary cortical neurons. Genistein inhibits protein synthesis by >80% in a dose-dependent manner (10–80 μg/ml) and concurrently decreases ternary complex formation by 60%. At the doses investigated, genistein depresses tyrosine kinase activity and concomitantly stimulates PKC activity. We propose that a protein tyrosine kinase participates in the initiation of protein synthesis in neurons, by affecting the activity of elF-2 directly or through a protein kinase cascade.  相似文献   

10.

Nucleophilic displacement of the tosyloxy group in 7-(2-hydroxy-3-p-toluenesulfonyloxypropyl)theophylline (1) with azide anion afforded 7-(3-azido-2-hydroxypropyl)theophylline (2). Reduction of the 3-azido group in 2 with Ph3P/Py/NH4OH afforded the 3-amino derivative 4, alternatively obtained by regioselective amination of 7-(2,3-epoxypropyl)theophylline (3). Selective acetylation of 4 gave the N-acetyl derivative 5. 1,3-Dipolar cycloaddition of the azide group in 2 with N1-propargyl thymine (6) afforded the regioisomeric triazole 7.  相似文献   

11.
Abstract: The pH optimum of native adrenal medulla tyrosine hydroxylase activity is shifted from 5.8 to 6.4 by polyanions (heparin, dextran sulphate), salts (NaCl, Na2SO4) and the anionic buffer 2-( N -morpholino)ethanesulphonic acid (MES). Simultaneously, the activity at the optimal pH is increased. Kinetic studies have shown that this activation is associated with a decrease of the apparent K m of the enzyme for the cofactor 6,7-dimethyltetrahydropterin (DMPH4) and an increase in the V max for tyrosine and DMPH4. The K m for the tyrosine remained unchanged. These data have been interpreted in terms of the polyelectrolyte theory. The adsorption of tyrosine hydroxylase on various affinity gels containing heparin, dextran sulphate or unsulphated polymer dextran as ligands indicate that the activation of the enzyme is mediated by electrostatic interactions with the anionic species. The site of electrostatic interaction possesses some specificity since the binding constants are higher for heparin or dextran sulphate than for NaCl or MES buffer. Moreover, 3-( N -morpholino)propanesulphonic acid (MOPS) a slightly structurally different buffer inhibits the enzyme activity whereas N -(2-acetamido)-2-amino-ethanesulphonic acid (ACES) has no effect. A limited proteolytic digestion which preserves the enzymatic activity, destroys the effects of the anions. The isoelectric point and the molecular parameters of tyrosine hydroxylase are markedly altered after limited digestion. It is therefore suggested that the interaction between the hydroxylase and anionic compounds occurs on a part of the protein which is different from the active site and which is lost by proteolysis. This portion of the protein might be involved in regulation of native tyrosine hydroxylase.  相似文献   

12.
Abstract: Human tyrosine hydroxylase (HTH) RNA undergoes alternative splicing, and four different forms of HTH mRNA have been previously identified. Rabbit antibodies were raised against octapeptides unique to each of the four isoforms of HTH predicted from these mRNAs. Blot immunolabeling of human adrenal medulla, pheochromocytoma, and several neuroblastoma cell lines with affinitypurified anti-HTH peptide antibodies demonstrated the presence of all four HTH isoforms in each of these tissues. Quantitative immunolabeling assays for HTH-1, -2, and -4 were established, and HTH isoform levels were determined in several human neuroblastoma cell lines. Whereas total HTH levels differed up to fourfold among the HTH-positive neuroblastoma cell lines studied [LA-N-1, LA-N-5, CHP-234, BE(2)-C, and BE(2)-M17], the relative abundances of HTH isoforms in each of the cell lines were similar. Immunocytochemical analyses demonstrated that HTH immunoreactivity was distributed unequally among the cells in each of these neuroblastoma lines, and morphological interconversion did not account for this heterogeneity. A direct relationship between the percentage of HTH-positive cells and overall HTH levels was also observed. This relationship, in the absence of an apparent clonal basis for the heterogeneity, suggests that HTH expression in neuroblastoma cells may be controlled in a relatively "all-ornone"(bimodal) fashion.  相似文献   

13.
Abstract: Activation of tyrosine kinases is established as an important mechanism for controlling growth cone motility and neurite outgrowth. We have tested the effects of a range of tyrosine kinase inhibitors on neurite outgrowth from postnatal day 4 cerebellar granule cells cultured over confluent monolayers of 3T3 fibroblasts. The only agent that had any effect was herbimycin A, which stimulated neurite outgrowth. The response is shown to be attributable to a direct effect of this tyrosine kinase inhibitor on neurones. The neurite outgrowth response to herbimycin A was inhibited by two other tyrosine kinase inhibitors, which on their own did not affect neurite outgrowth. The data suggest that the response to herbimycin A reflects either a direct or indirect activation of one or more protein tyrosine kinases. Independent signalling events downstream from tyrosine kinase activation underlying the neurite outgrowth response to herbimycin A include increased activity of protein kinase C and calcium influx into neurones through both N-and L-type calcium channels.  相似文献   

14.
BIT (brain immunoglobulin-like molecule with tyrosine-based activation motifs) is a membrane glycoprotein that has two cytoplasmic TAMs (tyrosine-based activation motifs). We previously reported that tyrosine-phosphorylated TAMs of BIT interact with the Src homology 2 domain-containing protein tyrosine phosphatase SHP-2 both in vitro and in transfected cells, and this association results in a potent stimulation of the phosphatase activity of SHP-2. Both BIT and SHP-2 are highly expressed in the mammalian brain, and they may play important roles in the regulation of synaptic function. In this study, we found that nerve growth factor (NGF) treatment of PC12 cells leads to the tyrosine phosphorylation of BIT and a subsequent complex formation between BIT and SHP-2. Furthermore, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) also induced the tyrosine phosphorylation of BIT and the association with SHP-2 in primary cultured rat neurons. Our results suggest that the BIT-SHP-2 signaling pathway is a novel signal transduction mechanism of neurons that acts in response to neurotrophic factors such as NGF, BDNF, and NT-3.  相似文献   

15.
Long-term cold exposure (5-7 days) is known to induce concomitant increases in the levels of adrenomedullary tyrosine hydroxylase (TH) RNA, protein, and enzyme activity. In this report, we compare the time courses of these changes and investigate the effects of cold exposure on the levels of biopterin, the cofactor required for tyrosine hydroxylation. After only 1 h of cold exposure, TH mRNA abundance increased 71% compared with nonstressed controls. Increases in total cellular TH RNA levels were maximal (threefold over control values) within 3-6 h of cold exposure and remained elevated throughout the duration of the experiment (72 h). TH protein levels increased rapidly after 24 h of cold exposure and reached a maximal value threefold above that of controls at 48-72 h. Despite the relatively rapid and large elevations in TH RNA and protein content, only modest increases in TH activity were detected during the initial 48 h of cold exposure. Adrenomedullary biopterin increased rapidly after the onset of cold exposure, rising to a level approximately twofold that of the nonstressed controls at 24 h, and remained at this level throughout the duration of the stress period. Taken together, the results of this time course study indicate that cold-induced alterations in adrenal TH activity are mediated by multiple cellular control mechanisms, which may include pre- and posttranslational regulation. Our findings also suggest that cold stress-induced increases in the levels of the TH cofactor may represent another key event in the sympathoadrenal system's response to cold stress.  相似文献   

16.
Tyrosine hydroxylase was purified from bovine corpus striatum. The native enzyme had a half-life of 15 +/- 3 min at 50 degrees C. Phosphorylation of tyrosine hydroxylase with protein kinase purified from both corpus striatum and heart activated the enzyme, but activity was rapidly lost with additional preincubation of the enzyme at 30 degrees C. Thermal denaturation studies indicated that phosphorylated tyrosine hydroxylase had a half-life of 5 +/- 2 min at 50 degrees C  相似文献   

17.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   

18.
Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.  相似文献   

19.
The cytoplasmic tyrosine phosphatase SHP1 has been shown to inhibit the oncogenic fusion protein nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), and loss of SHP1 contributes to NPM-ALK-mediated tumorigenesis. In this study, we aimed to further understand how SHP1 interacts and regulates NPM-ALK. We employed an in vitro model in which GP293 cells were transfected with various combinations of NPM-ALK (or mutants) and SHP1 (or mutants) expression vectors. We found that SHP1 co-immunoprecipitated with NPM-ALK, but not the enzymatically inactive NPM-ALKK210R mutant, or the mutant in which all three functionally important tyrosine residues (namely, Tyr338, Tyr342, and Tyr343) in the kinase activation loop (KAL) of ALK were mutated. Interestingly, whereas mutation of Tyr338 or Tyr342 did not result in any substantial change in the NPM-ALK/SHP1 binding (assessed by co-immunoprecipitation), mutation of Tyr343 abrogated this interaction. Furthermore, the NPM-ALK/SHP1 binding was readily detectable when each of the remaining 8 tyrosine residues known to be phosphorylated were mutated. Although the expression of SHP1 effectively reduced the level of tyrosine phosphorylation of NPM-ALK, it did not affect that of the NPM-ALKY343F mutant. In soft agar clonogenic assay, SHP1 expression significantly reduced the tumorigenicity of NPM-ALK but not that of NPM-ALKY343F. In conclusion, we identified Tyr343 of NPM-ALK as the crucial site for mediating the NPM-ALK/SHP1 interaction. Our results also support the notion that the tumor suppressor effects of SHP1 on NPM-ALK are dependent on its ability to bind to this oncogenic protein.  相似文献   

20.
Abstract: In hypothalamic cells cultured in serum-free medium, the quantity of tyrosine hydroxylase mRNA increases after treatment with an activator of the protein kinase A pathway (8-bromoadenosine cyclic AMP, 3-isobutyl-1-methylxanthine, or forskolin) or an activator of protein kinase C (12- O -tetradecanoylphorbol 13-acetate or sn -1,2-diacylglycerol). The tyrosine hydroxylase mRNA level decreases in the cells after inhibition of protein kinase C with calphostin C or after depletion of protein kinase C by extended phorbol ester treatment. These data suggest that both protein kinase pathways regulate tyrosine hydroxylase gene expression in hypothalamic cells. As simultaneous activation of both pathways has less than an additive effect on the tyrosine hydroxylase mRNA level, they appear to be interrelated. Compared with the rapid and dramatic increase of the tyrosine hydroxylase mRNA level in pheochromocytoma cells, activation of the protein kinase A or protein kinase C pathway in the cultured hypothalamic cells induces slow changes of a small magnitude in the amount of tyrosine hydroxylase mRNA. The slow regulation of tyrosine hydroxylase gene expression in hypothalamic dopaminergic neurons corresponds to the relatively high stability of tyrosine hydroxylase mRNA (half-life = 14 ± 1 h) in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号