首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Positional distributions of various dinucleotides in experimentally derived human nucleosome DNA sequences are analyzed. Nucleosome positioning in this species is found to depend largely on GG and CC dinucleotides periodically distributed along the nucleosome DNA sequence, with the period of 10.4 bases. The GG and CC dinucleotides oscillate counterphase, i.e., their respective preferred positions are shifted about a half-period from one another, as it was observed earlier for AA and TT dinucleotides. Other purine-purine and pyrimidine-pyrimidine dinucleotides (RR and YY) display the same periodical and counterphase pattern. The dominance of oscillating GG and CC dinucleotides in human nucleosomes and the contribution of AG(CT), GA(TC), and AA(TT) suggest a general nucleosome DNA sequence pattern - counterphase oscillation of RR and YY dinucleotides. AA and TT dinucleotides, commonly accepted as major players, are only weak contributors in the case of human nucleosomes.  相似文献   

3.
Multiple alignment of 118 nucleosomal DNA sequences by maximizing simultaneously match of AA dinucleotides and match of TT dinucleotides results in a pattern of the dinucleotide distributions which is characteristic of the nucleosomal DNA sequences. The AA dinucleotides are found to be distributed symmetrically relative to the TT dinucleotide distribution, around the middle point of the nucleosomal DNA sequence. The distances between major peaks of the distributions are multiples of about 10.4 bases. The peaks of the TT distribution are shifted by 6 bases downstream from the peaks of the AA distribution.  相似文献   

4.
Sequence-directed DNA curvature is most commonly associated with AA dinucleotides in the form of polyadenine runs. We demonstrate inherent curvature in DNA which lacks AA/TT dinucleotides using the criteria of polyacrylamide gel mobility and efficiency of DNA cyclization. These studies are based upon two 21-base pair synthetic DNA fragments designed to exhibit fixed curvature according to deflections made to the helical axis by non-AA dinucleotide stacks. Repeats of these sequences display anomalously slow migration in polyacrylamide gels. Moreover, both sequences describe helical conformations that are closed into circles by DNA ligase at much smaller sizes than is typical of nondeformed DNA. Chemical cleavage of these DNA molecules with hydroxyl radical is also consistent with local variation in helical conformation at specific dinucleotide steps.  相似文献   

5.
Extensive DNA sequence analysis of three eukaryotes, S. cerevisiae, C. elegans, and D. melanogaster, reveals two different AA/TT periodical patterns associated with the nucleosome positioning. The first pattern is the counter-phase oscillation of AA and TT dinucleotides, which has been frequently considered as the nucleosome DNA pattern. This represents the sequence rule I for chromatin structure. The second pattern is the in-phase oscillation of the AA and TT dinucleotides with the same nucleosome DNA period, 10.4 bases. This pattern apparently corresponds to curved DNA, that also participates in the nucleosome formation, and represents the sequence rule II for chromatin. The positional correlations of AA and TT dinucleotides also indicate that the nucleosomes are separated by specific linker sizes (preferably 8, 18, ... bases), dictated by the steric exclusion rules. Thus, the sequence positions of the neighboring nucleosomes are correlated, and this represents the sequence rule III.  相似文献   

6.
By measuring prevailing distances between YY, YR, RR, and RY dinucleotides in the large database of the nucleosome DNA fragments from C. elegans, the consensus sequence structure of the nucleosome DNA repeat of C. elegans was reconstructed: (YYYYYRRRRR)n. An actual period was estimated to be 10.4 bases. The pattern is fully consistent with the nucleosome DNA patterns of other eukaryotes, as established earlier, and, thus, the YYYYYRRRRR repeat can be considered as consensus nucleosome DNA sequence repeat across eukaryotic species. Similar distance analysis for [A, T] dinucleotides suggested the related pattern (TTTYTARAAA)n where the TT and AA dinucleotides display rather out of phase behavior, contrary to the "AA or TT" in-phase periodicity, considered in some publications. A weak 5-base periodicity in the distribution of TA dinucleotides was detected.  相似文献   

7.
Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.  相似文献   

8.
Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are the two main classes of mutagenic DNA damages induced by UVB radiation. Numerous studies have been devoted so far to their formation and repair in human cells and skin. However, the biochemical methods used often lack the specificity that would allow the individual study of each of the four CPDs and 6-4PPs produced at TT, TC, CT and CC dinucleotides. In the present work, we applied an HPLC-mass spectrometry assay to study the formation and repair of CPDs and 6-4PPs photoproducts in primary cultures of human keratinocytes and fibroblasts as well as in whole human skin. We first observed that the yield of dimeric lesions was slightly higher in fibroblasts than in keratinocytes. In contrast, the rate of global repair was higher in the last cell type. Moreover, removal of DNA photoproducts in skin biopsies was found to be slower than in both cultured skin cells. In agreement with previous works, the repair of 6-4PPs was found to be more efficient than that of CPDs in the three types of samples, with no observed difference between the removal of the TT and TC derivatives. In contrast, a significant influence of the nature of the two modified pyrimidines was observed on the repair rate of CPDs. The decreasing order of removal efficiency was the following: C<>T>C<>C>T<>C>T<>T. These data, together with the known intrinsic mutational properties of the lesions, would support the reported UV mutation spectra. A noticeable exception concerns CC dinucleotides that are mutational hotspots with an UV-specific CC to TT tandem mutation, although related bipyrimidine photoproducts are produced in low yields and efficiently repaired.  相似文献   

9.
Abstract

Extensive DNA sequence analysis of three eukaryotes, S. cerevisiae, C. elegans, and D. melanogaster, reveals two different AA/TT periodical patterns associated with the nucleosome positioning. The first pattern is the counter-phase oscillation of AA and TT dinucleotides, which has been frequently considered as the nucleosome DNA pattern. This represents the sequence rule I for chromatin structure. The second pattern is the in-phase oscillation of the AA and TT dinucleotides with the same nucleosome DNA period, 10.4 bases. This pattern apparently corresponds to curved DNA, that also participates in the nucleosome formation, and represents the sequence rule II for chromatin. The positional correlations of AA and TT dinucleotides also indicate that the nucleosomes are separated by specific linker sizes (preferably 8, 18,…bases), dictated by the steric exclusion rules. Thus, the sequence positions of the neighboring nucleosomes are correlated, and this represents the sequence rule III.  相似文献   

10.
Abstract

Positional correlation analysis for the complete genome of Saccharomyces cerevisiae is performed with the aim to reveal possible chromatin-related sequence features. A strong periodicity with the period 10.4 bases is detected in the distance histograms for the dinucleotides AA and TT, with the characteristic decay distance of approximately 50 base pairs. The oscillations are observed as well in the distributions of other dinucleotides. However, the respective amplitudes are small, consistent with secondary effects, due to dominant periodicity of AA and TT. The observations are in accord with earlier data on the chromatin sequence periodicities and nucleosome DNA sequence patterns. The autocorrelations of AA and TT dinucleotides in yeast include also a counter-phase component. A tentative DNA sequence pattern for the yeast nucleosomes is suggested and verified by comparison of its autocorrelation plots with the respective natural autocorrelations. The nucleosome mapping guided by the pattern is in accord with experimental data on the linker length distribution in yeast.  相似文献   

11.
Abstract

By measuring prevailing distances between YY, YR, RR, and RY dinucleotides in the large database of the nucleosome DNA fragments from C. elegans, the consensus sequence structure of the nucleosome DNA repeat of C. elegans was reconstructed: (YYYYYRRRRR)n. An actual period was estimated to be 10.4 bases. The pattern is fully consistent with the nucleosome DNA patterns of other eukaryotes, as established earlier, and, thus, the YYYYYRRRRR repeat can be considered as consensus nucleosome DNA sequence repeat across eukaryotic species. Similar distance analysis for [A, T] dinucleotides suggested the related pattern (TTTYTARAAA)n where the TT and AA dinucleotides display rather out of phase behavior, contrary to the “AA or TT” in-phase periodicity, considered in some publications. A weak 5-base periodicity in the distribution of TA dinucleotides was detected.  相似文献   

12.
It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context.  相似文献   

13.
J E Hyde  P F Sims 《Gene》1987,61(2):177-187
We have statistically analysed the distribution of nucleotides and dinucleotides in 21 genes of the 81% A + T-rich human malaria parasite Plasmodium falciparum. The mRNA-synonymous strands of this protozoan show in general a marked excess of purines over pyrimidines, correlated with abnormally high levels of Lys and Glu. We have used the large differences in base composition between coding and non-coding regions to estimate that the parasite possesses in the range of 2700-5400 genes. The dinucleotide preference patterns are compared with consensus patterns derived from other organisms [Nussinov, Nucl. Acids Res. 12 (1984) 1749-1763]. Patterns in the coding regions surprisingly resemble those of higher, rather than lower eukaryotes, particularly with respect to TG elevation and CG suppression. The latter is correlated with an abnormally low level of Arg in these parasites. In the non-coding regions, the four dinucleotides made up of C and/or G are found with significantly higher frequencies than expected (approx. 50-150%), specifically to the 5' side of the coding regions. The possible role of these dinucleotides in control sequences is discussed.  相似文献   

14.
Long dinucleotide repeats found in exons present a substantial mutational hazard: mutations at these loci occur often and generate frameshifts. Here, we provide clear and compelling evidence that exonic dinucleotides experience strong selective constraint. In humans, only 18 exonic dinucleotides have repeat lengths greater than six, which contrasts sharply with the genome‐wide distribution of dinucleotides. We genotyped each of these dinucleotides in 200 humans from eight 1000 Genomes Project populations and found a near‐absence of polymorphism. More remarkably, divergence data demonstrate that repeat lengths have been conserved across the primate phylogeny in spite of what is likely considerable mutational pressure. Coalescent simulations show that even a very low mutation rate at these loci fails to explain the anomalous patterns of polymorphism and divergence. Our data support two related selective constraints on the evolution of exonic dinucleotides: a short‐term intolerance for any change to repeat length and a long‐term prevention of increases to repeat length. In general, our results implicate purifying selection as the force that eliminates new, deleterious mutants at exonic dinucleotides. We briefly discuss the evolution of the longest exonic dinucleotide in the human genome—a 10 x CA repeat in fibroblast growth factor receptor‐like 1 (FGFRL1)—that should possess a considerably greater mutation rate than any other exonic dinucleotide and therefore generate a large number of deleterious variants.  相似文献   

15.
We report here the locations of curved DNA in the human erythropoietin receptor gene. A total of 13 DNA bend sites were mapped by circular permutation assays, appearing at an average interval of 651.2+/-214.6 (S.D.) in the 8-kb region. The bend centers in these 13 bend sites were confirmed by oligonucleotide-based assays where most of these centers had bend angles higher than that shown by (AAACCGGGCC) x (A)20 and lower than that shown by (AAACCGGGCC)2 x (A)10. DNA curvature mapping by TRIF software, which is based on the distribution of dinucleotides, primarily AA and TT, provided a highly accurate prediction for the locations of the bend sites. They showed approximately 20 degrees to 40 degrees of bend angles demonstrated by the oligonucleotide assays and by computer analysis.  相似文献   

16.
We have shown previously that the heavy metal-induced metallothionein-I (MT-I) gene expression is specifically repressed in a rat fibroblast cell line (Ku-80) overexpressing the 80-kDa subunit of Ku autoantigen but not in cell lines overexpressing the 70-kDa subunit or Ku heterodimer. Here, we explored the molecular mechanism of silencing of MT-I gene in Ku-80 cells. Genomic footprinting analysis revealed both basal and heavy metal-inducible binding at specific cis elements in the parental cell line (Rat-1). By contrast, MT-I promoter in Ku-80 cells was refractory to any transactivating factors, implying alteration of chromatin structure. Treatment of two clonal lines of Ku-80 cells with 5-azacytidine, a potent DNA demethylating agent, rendered MT-I gene inducible by heavy metals, suggesting that the gene is methylated in these cells. Bisulfite genomic sequencing revealed that all 21 CpG dinucleotides in MT-I immediate promoter were methylated in Ku-80 cells, whereas only four CpG dinucleotides were methylated in Rat-1 cells. Almost all methylated CpG dinucleotides were demethylated in Ku-80 cells after 5-azacytidine treatment. To our knowledge, this is the first report that describes hypermethylation of a specific gene promoter and its resultant silencing in response to overexpression of a cellular protein.  相似文献   

17.
Xia X  Wei T  Xie Z  Danchin A 《Genetics》2002,161(4):1385-1394
We used 94 RAPD primers of different nucleotide composition to probe the genomic differences between a highly virulent P. multocida strain and an attenuated vaccine strain derived from the virulent strain after culturing the latter under increasing temperature for approximately 14,400 generations. The GC content of the vaccine strain is significantly (P < 0.05) lower than that of the virulent strain, contrary to the popular hypothesis of covariation between the GC content and temperature. The frequencies of AA, TA, and TT dinucleotides were higher, and those of AT, GC, and CG dinucleotides were lower, in the vaccine strain than in the virulent strain. A statistic called genomic RAPD entropy is formulated to measure the randomness of the genome, and the genome of the vaccine strain is more random than that of the virulent strain. These differences between the virulent and vaccine strains are interpreted in terms of mutation and selection under increased culturing temperature. A method for estimating substitution rates is developed in the appendix.  相似文献   

18.
Oxidative DNA damage may play an important role in human disease including cancer. Previously, mutational spectra have been determined using systems that include transition metal ions and hydrogen peroxide (H2O2). G→T transversions and C→T transitions were the most common mutations observed including some CC→TT tandem mutations. C→T transition mutations at methylated CpG dinucleotides are the most common mutations in human genetic diseases. It has been hypothesized that oxidative stress may increase the frequency of mutations at methylated CpG sequences. Here we have used a CpG-methylated shuttle vector to derive mutational spectra of copper/H2O2-induced DNA damage upon passage of the shuttle vector through human fibroblasts. We find that copper/H2O2 treatment produces higher numbers of CpG transition mutations when the CpGs are methylated but does not create clear C→T hotspots at these sites. More strikingly, we observed that this treatment produces a substantial frequency of mutations that were mCG→TT tandem mutations. Six of seven tandem mutations were of this type. mCG→TT mutations (6/63 = 10% of all mutations) were observed only in nucleotide excision repair-deficient (XP-A) cells but were not found in repair-proficient cells. The data suggest that this novel type of mutation may be produced by vicinal or cross-linked base damage involving 5-methylcytosine and a neighboring guanine, which is repaired by nucleotide excision repair. We suggest that the underlying oxidative lesions could be responsible for the progressive neurodegeneration seen in XP-A individuals.  相似文献   

19.
Aberrant DNA methylation of CpG sites is among the earliest and most frequent alterations in cancer. Several studies suggest that aberrant methylation occurs in a tumour type-specific manner. However, large-scale analysis of candidate genes has so far been hampered by the lack of high throughput assays for methylation detection. We have developed the first microarray-based technique which allows genome-wide assessment of selected CpG dinucleotides as well as quantification of methylation at each site. Several hundred CpG sites were screened in 76 samples from four different human tumour types and corresponding healthy controls. Discriminative CpG dinucleotides were identified for different tissue type distinctions and used to predict the tumour class of as yet unknown samples with high accuracy using machine learning techniques. Some CpG dinucleotides correlate with progression to malignancy, whereas others are methylated in a tissue-specific manner independent of malignancy. Our results demonstrate that genome-wide analysis of methylation patterns combined with supervised and unsupervised machine learning techniques constitute a powerful novel tool to classify human cancers.  相似文献   

20.
Deciphering sequence information from sugar-phosphate backbone is finely tuned through the conformational substates of DNA. BII conformation, one of the conformational substates of B-DNA, is known to play a key role in DNA-protein recognition. BI and BII are identified by the epsilon-zeta difference, which is negative in BI and positive in BII. Our analysis of MD and crystal structures shows that BII conformation is sequence specific and dinucleotides GC, CG, CA, TG, TA show high preference to take up BII conformation, while TT, TC, CT, CC dinucleotides rarely take up this conformation. Significant changes were observed in the dinucleotide parameters viz. twist, roll, and slide for the steps having BII conformation. Interestingly, the magnitude of variation in the dinucleotide parameters is seen to depend mainly on two factors, the magnitude of epsilon-zeta difference and the presence or absence of BII conformation in the second strand, across the WC base-paired dinucleotide step. Based on these two factors, the conformational substate of a dinucleotide step can be further classified as BI.BI (BI conformation in both strands), BI.BII (BI conformation in one strand and BII conformation in the other), and BII.BII (BII conformation in both strands). The occurrence of BII in both strands was found to be quite rare and thus, it can be concluded that BI.BI and BI.BII hybrid steps are more favorable than a BII.BII step. In conformity with the sequence preference seen for dinucleotides in each strand, BII.BII combination of backbone conformation was observed only for GC, CG, CA, and TG containing dinucleotide steps. We further classified BII.BII step as strong BII and weak BII depending on the magnitude of the average epsilon-zeta difference. The dinucleotide steps which belong to the category of strong BII, have large twist, high positive slide and negative roll values, while those in the weak BII group have roll, twist, and slide values similar to that of hybrid BI.BII steps. This conformational property could be contributing to the groove opening/closing and thus can modulate protein-DNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号