首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

The Z- and E-thymine and cytosine pronucleotides 3d, 4d, 3e, and 4e of methylenecyclopropane nucleosides analogues were synthesized, evaluated for their antiviral activity against human cytomegalovirus (HCMV), herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human immunodeficiency virus type 1 (HSV-1), and hepatitis B virus (HBV) and their potency was compared with the parent compounds 1d, 2d, 1e, and 2e. Prodrugs 3d and 4d were obtained by phosphorylation of parent analogues 1d or 2d with reagent 8. A similar phosphorylation of N4-benzoylcytosine methylenecyclopropanes 9a and 9b gave intermediates 11a and 11b. Deprotection with hydrazine in pyridine–acetic acid gave pronucleotides 3e and 4e. The Z-cytosine analogue 3e was active against HCMV and EBV. The cytosine E-isomer 4e was moderately effective against EBV.  相似文献   

2.
A detailed doublet potential energy surface for the reaction of CH with CH3CCH is investigated at the B3LYP/6-311G(d,p) and G3B3 (single-point) levels. Various possible reaction pathways are probed. It is shown that the reaction is initiated by the addition of CH to the terminal C atom of CH3CCH, forming CH3CCHCH 1 (1a,1b). Starting from 1 (1a,1b), the most feasible pathway is the ring closure of 1a to CH3–cCCHCH 2 followed by dissociation to P 3 (CH3–cCCCH+H), or a 2,3 H shift in 1a to form CH3CHCCH 3 followed by C–H bond cleavage to form P 5 (CH2CHCCH+H), or a 1,2 H-shift in 1 (1a, 1b) to form CH3CCCH2 4 followed by C–H bond fission to form P 6 (CH2CCCH2+H). Much less competitively, 1 (1a,1b) can undergo 3,4 H shift to form CH2CHCHCH 5. Subsequently, 5 can undergo either C–H bond cleavage to form P 5 (CH2CHCCH+H) or C–C bond cleavage to generate P 7 (C2H2+C2H3). Our calculated results may represent the first mechanistic study of the CH + CH3CCH reaction, and may thus lead to a deeper understanding of the title reaction.  相似文献   

3.
The three oligosaccharide octyl-S-glycosides Man-α1,6-Man-α1,4-GlcNH2-α1,S-Octyl (19), Man-α1,6-(Gal-α1,3)Man-α1,4-GlcNH2-α1,S-Octyl (27) and Man-α1,2-Man-α1,6-(Gal-α1,3)Man-α1,4-GlcNH2-α1,S-Octyl (37), related to the GPI anchor of Trypanosoma brucei were prepared by a stepwise and block-wise approach from octyl 2-azido-2-deoxy-3,6-di-O-benzyl-1-thio-α-d-glucopyranoside (8) and octyl 2-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-1-thio-α-d-mannopyransoside (9). Glucosamine derivative 8 was obtained from 1,3,4,6-tetra-O-acetyl-2-azido-2-desoxy-β-d-glucopyranose (1) in five steps. Mannoside 9 was converted into the corresponding imidate 12 and coupled with 8 to give disaccharide octyl-S-glycoside 13 which was further mannosylated to afford trisaccharide 19 upon deprotection. Likewise, mannoside 9 was galactosylated, converted into the corresponding imidate and coupled with 8 to give trisaccharide 25. Mannosylation of the latter afforded tetrasaccharide 27 upon deprotection. Condensation of 25 with disaccharide imidate 35 gave, upon deprotection of the intermediates, the corresponding pentasaccharide octyl-S-glycoside 37. Saccharides 19, 27 and 37 are suitable substrates for studying the enzymatic glycosylation pattern of the GPI anchor of T. brucei.  相似文献   

4.
Mutilin (4) and deoxy analogues 2 and 3 are biosynthetic precursors of pleuromutilin (1) in the later stage of biosynthesis. Precursors 2 and 3 are required for studies on the oxygenation steps in biosynthesis, and were synthesized from readily available 1 via 4 by deoxygenation of the hydroxy groups. Feeding experiments with the 2H-labeled precursors confirmed their microbial conversion into 1.  相似文献   

5.
Abstract

In expectation of discovering their antiviral activity, acyclic adenosine derivatives 7, 11, 12, and 16 were designed as analogs of neplanocin A (NPA) and L-eritadenine which are strong inhibitors of S-adenosyl-L-homocysteine hydrolase. The 1′,5′-seco-analog of 4′-deoxymethyl-NPA (DHCA) 7 was synthesized by dideoxygenation of 9-(2,3-O-isopropylidene-D-ribityl)adenine (2). Acyclic DHCA analogs 11 and 16 were obtained by Wittig reaction of the aldehyde 3 with Ph3P=CHCO2Et and Ph3P=CHCN, respectively. Hydrolysis of the ester 11 afforded a vinylog of L-eritadenine 12. The synthesized acyclic nucleosides 7, 10, and 11 were evaluated for antiviral activity, however, none of them showed any significant antiviral activity.  相似文献   

6.
New carbohydrate-based surfactants consisting of hydrophilic cellobiosyl and hydrophobic glucosyl residues, methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-α-d-glucopyranoside 1 (GβGαMα, G: glucopyranosyl residue, α and β: α-(1→4)- and β-(1→4) glycosidic bonds, M: methyl group), 2 (GβGβMα), 3 (GβGαMβ), 4 (GβGβMβ), 5 (GβGαEα, E: ethyl group), 6 (GβGβEα), 7 (GβGαEβ), 8 (GβGβEβ) and eight α-and β-glycoside mixtures (a mixture of 1 and 2: 1/2 = 62/38 (9), 32/68 (10); a mixture of 3 and 4: 3/4 = 69/31 (11), 32/68 (12); a mixture of 5 and 6: 5/6 = 62/38 (13), 33/67 (14); a mixture of 7 and 8: 7/8 = 59/41 (15), 29/71 (16)) were synthesized via combined methods consisting of acid-catalyzed alcoholysis of cellulose ethers and glycosylation of phenyl thio-cellobioside derivatives. Their surface activities in aqueous solution depended on their chemical structures: α- or β-(1→4) linkage between hydrophilic cellobiosyl and hydrophobic glucosyl blocks, methyl or ethyl groups of hydrophobic glucosyl block, and α- or β-linked ether group at the C-1 of hydrophobic glucosyl block. The mixing effect of α- and β-glycosides on surface activities was also investigated. As a result, ethyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-ethyl-β-d-glucopyranoside 7 (GβGαEβ) had the highest surface activity, and its critical micellar concentration (CMC) and γCMC (surface tension at CMC) values of compound 7 were 0.5 mM (ca. 0.03 wt %) and 34.5 mN/m, respectively. The surface tensions of α- and β-glycoside mixtures except for compounds 9 and 10 were almost equal to those of pure compounds. The syntheses of the mixtures of α- and β-glycosides without purification process are easier than those of pure compounds. Thus, the mixtures should be more practical compounds for industrial use as a surfactant.  相似文献   

7.
Regioselective alkylation of 5-(3-chlorobenzo[b]thien-2-yl)-4H-1,2,4-triazole (1) with hydroxy alkylating agents 2, 3, 13, and the 2,3-O-isopropylidene-1-O-(p-tolylsulfonyl)-glycerol (10) afforded the corresponding S-alkylated derivatives 6, 7, 11, and 14 under both conventional and microwave irradiation conditions; bentonite as a solid support gave better results, with no change in regioselectivity. A facile intramolecular dehydrative ring closure of 6, 7, 11, and 14 using K2CO3 in DMF afforded the corresponding fused triazolo-thiazines and thiazolo-triazole 17–19. The isopropylidenes and acetyl derivatives of the products were prepared.  相似文献   

8.
Abstract

Treatment of the 2,3-di-O-benzoate 1 with sodium boronhydride mainly afforded the 3-O-benzoate 2 accompanied with isomers 3a,b and fully deprotected product 4. Compound 2 was converted to 5, from which 8 was obtained. The 1-cyclobutanols 8 and 5 were successfully condensed with 6-chloropurine by Mitsunobu reaction to give 9 and 11, respectively. After partial deprotection, the cyclobutyl nucleosides 10 and 15 were subjected to fluorination using DAST to afford the fluoromethyl analogs 12 and 16 from which target compounds 14 and 17 were obtained in good yields, respectively.

  相似文献   

9.
Abstract

This article describes the synthesis of some novel heterocyclic sulfonamides having biologically active thiophene 3, 4, 5, 6, coumarin 8, benzocoumarin 9, thiazole 7, piperidine 10, pyrrolidine 11, pyrazole 14 and pyridine 12, 13. Starting with 4-(1-(2-(2-cyanoacetyl)hydrazono)ethyl)-N-ethyl-N-methylbenzenesulfonamide (2), which was prepared from condensation of acetophenone derivative 1 with 2-cyanoacetohydrazide. The structures of the newly synthesized compounds were confirmed by elemental analysis, IR, 1H NMR, 13C NMR, 19F NMR and MS spectral data. All the newly synthesized heterocyclic sulfonamides were evaluated as in-vitro anti-breast cancer cell line (MCF7) and as in-vitro antimicrobial agents. Compounds 8, 5 and 11 were more active than MTX reference drug and compounds 12, 7, 4, 14, 5 and 8 were highly potent against Klebsiella pneumonia. Molecular operating environment performed virtual screening using molecular docking studies of the synthesized compounds. The results indicated that some prepared compounds are suitable inhibitor against dihydrofolate reductase (DHFR) enzyme (PDBSD:4DFR) with further modification.  相似文献   

10.
A useful route is described for obtaining Z and E unsaturated alkylating agents 3 and 4. Coupling 6-azauracils 5 and 6 with unsaturated alkylating agent followed by the deprotection with H+ resin gave acyclonucleosides 11–14 in good overall yields. Unsaturated acyclonucleosides phosphonates 19 and 20 were prepared using potassium carbonate as base and 4-bromobut-2-enyl diethyl phosphonate 16 as the alkylating agent. The introduction of a propargyl group at the N-3 position of acyclonucleosides 7, 8, 17, 18, 19, and 20 was achieved using potassium carbonate in DMF.  相似文献   

11.
苦槛蓝叶中的黄酮类化合物   总被引:2,自引:0,他引:2  
为了解苦槛蓝(Myoporum bontioides A.Gray)的化学成分,采用色谱分离技术从苦槛蓝叶片中分离得到11个黄酮类化合物。通过波谱分析,他们的结构分别鉴定为:桔皮素(1)、甜橙素(2)、5,4′-二羟基-6,7,8,3′-四甲氧基黄酮(3)、4′,5,7,8-四甲氧基黄酮(4)、去甲基川陈皮素(5)、5-羟基-6,7,3′,4′-四甲氧基黄酮(6)、3′,4′,5,6,7,8-六甲氧基黄酮(7)、二氢山柰酚(8)、木犀草素(9)、3′,4′,5,7-四羟基-3-甲氧基黄酮(10)和芹黄素(11)。除化合物9之外,其他化合物均为首次从苦槛蓝叶片中分离得到。孢子萌发法测定结果表明,化合物1,2,8和9对香蕉炭疽菌(Colletotrichum musae)具有较好的抑菌活性。这为苦槛蓝叶片中有效成分的利用提供了理论依据。  相似文献   

12.
The aim of this study is to search for soluble epoxide hydrolase (sEH) inhibitors from natural plants, bioassay-guided fractionation of lipophilic n-hexane and chloroform layers of an extract of the aerial parts of Glycosmis stenocarpa led to the isolation of 12 compounds (112) including murrayafoline-A (1), isomahanine (2), bisisomahanine (3), saropeptate (4), (24?S)-ergost-4-en-3,6-dione (5), stigmasta-4-en-3,6-dion (6), stigmast-4-en-3-one (7), β-sitosterol (8), 24-methylpollinastanol (9), trans-phytol (10), neosarmentol III (11) and (+)-epiloliolide (12). Their structures were elucidated on the basis of spectroscopic data. Among them, neosarmentol III (11) was isolated from nature for the first time. All the isolated compounds were evaluated for their inhibitory activity against sEH. Among isolated carbazole-type compounds, isomahanine (2) and bisisomahanine (3) were identified as a potent inhibitor of sEH, with IC50 values of 22.5?±?1.7 and 7.7?±?1.2?µM, respectively. Moreover, the inhibitory action of 2 and 3 represented mixed-type enzyme inhibition.  相似文献   

13.
Abstract

As a part of the research aimed on identification of new nucleobase derivatives with improved biological properties, a series of novel 8-substituted acyclovir derivatives were synthesized. The 8-azidoguanosine 4 and novel 8-azidoacyclovir 9 were synthesized from commercially available guanosine 1 and acyclovir 6 which were transformed into 8-bromopurine derivatives 2 and 7 and hydrazine derivatives 3 and 8, respectively. 8-Triazolylguanosine 5 and 8-triazolylacyclovir analogs 1012 were successfully synthesized via the Cu(I) catalyzed 1,3-dipolar cycloaddition reaction of azides 4 and 9 with propargyl alcohol, 4-pentyn-1-ol and 5-hexyn-1-ol. The novel 1,4-disubstituted 1,2,3-triazolyl compounds 5, 1012 were evaluated for antiviral activity against selected DNA and RNA viruses and cytostatic activity against normal Madine Darby canine kidney (MDCK I) cells, and seven tumor cell lines (HeLa, CaCo-2, NCI-H358, Jurkat, K562, Raji and HuT78). While tested compounds exerted no antiviral activity at nontoxic concentrations, the 8-triazolyl acyclovir derivative 10, with the shortest alkyl substituent at the C-4 of triazole ring, was found to be the most active against the CaCo-2 cell line.  相似文献   

14.
Reaction of pyridin-2(1H)-one 1 with 4-bromobutylacetate (2), (2-acetoxyethoxy)methyl bromide (3) gave the corresponding nicotinonitrile O-acyclonucleosides, 4 and 5, respectively. Deacetylation of 4 and 5 gave the corresponding deprotected acyclonucleosides 6 and 7, respectively. Treatment of pyridin-2(1H)-one 1 with 1,3-dichloropropan-2-ol (8), epichlorohydrin (10) and allyl bromide (12) gave the corresponding nicotinonitrile O-acyclonucleosides 9, 11, and 13, respectively. Furthermore, reaction of pyridin-2(1H)-one 1 with the propargyl bromide (14) gave the corresponding 2-O-propargyl derivative 15, which was reacted via [3+2] cycloaddition with 4-azidobutyl acetate (16) and [(2-acetoxyethoxy)methyl]azide (17) to give the corresponding 1,2,3-triazole derivatives 18 and 19, respectively. The structures of the new synthesized compounds were characterized by using IR, 1H, 13C NMR spectra, and microanalysis. Selected members of these compounds were screened for antibacterial activity.  相似文献   

15.
Abstract

The biotransformation of arenobufagin (1) and cinobufotalin (2), isolated from the natural medicine Chan Su, by Alternaria alternata AS 3.4578 was carried out. Incubation of 1 and 2 afforded six metabolites: 3-oxo-arenobufagin (1a), ψ-bufarenogin (1b), 3-oxo-ψ-bufarenogin (1c), 3-oxo4-derivative of cinobufotalin (2a), 3-oxo-cinobufotalin (2b) and 12β-hydroxycinobufotalin (2c). Among them, metabolites 1a, 1c and 2c are new compounds and their structures were characterized on the basis of their spectroscopic data (NMR, MS and IR). Compounds 1, 2, 1b, 2a and 2b were evaluated for their cytotoxicity against HepG2 and MCF-7 human cancer cells, and all of them showed significant inhibitory activities.  相似文献   

16.
Owing to ever-increasing bacterial and fungal drug resistance, we attempted to develop novel antitubercular and antimicrobial agents. For this purpose, we developed some new fluorine-substituted chalcone analogs (3, 4, 9–15, and 20–23) using a structure–activity relationship approach. Target compounds were evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv and antimicrobial activity against five common pathogenic bacterial and three common fungal strains. Three derivatives (3, 9, and 10) displayed significant antitubercular activity with IC50 values of ≤16,760. Compounds derived from trimethoxy substituent scaffolds with monofluoro substitution on the B ring of the chalcone structure exhibited superior inhibition activity compared to corresponding hydroxy analogs. In terms of antimicrobial activity, most compounds (3, 9, 1214, and 23) exhibited moderate to potent activity against the bacteria, and the antifungal activities of compounds 3, 13, 15, 20, and 22 were comparable to those of reference drugs ampicillin and fluconazole.  相似文献   

17.
Abstract

A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Sr(II), Hg(II), Ag(I), Tl(I) and UO2(II) complexes of 2-(2-(4-carboxyphenyl)guanidino)acetic acid ligand have been synthesised and characterised by elemental analyses, IR, UV-Vis spectra, mass spectra (ligand and its zinc(II) complex), 1H NMR spectra (ligand and its mercury(II) complex), magnetic moments, conductances, thermal analyses (DTA and TGA) and ESR measurements. The IR data show that, the ligand behaves as neutral tridentate, (2), [(H2 LL)3 CCu2 ((OAc)4 ((H2 OO)2 ] ], neutral bidentate, (3), [(H2LL)Cu(OAc)2]].1/2H2OO, (13), [(HL)2CCuCl2((H2OO)2]], (17), [(H2LL)Cu(OOSO2))(H2OO)J,dibasic hexadentate, (4), [(L) Ni4((OAc)6((H2OO)J.4H2OO, (5), [(L)Mn4(OAc)6(H2O)10]. 4H2O, (6), [(L)Co4(OAc)6(H2O)10] . 4H2O, monobasic bidentate, (7), [(HL)(UO2)(OAc)(H2O)3], (12), [(HL)2Cu], (15), [(HL)2Fe2(Cl4)(H2O)2]. 7H2O, (16), [(HL)2Cr2(Cl4)(H2O)2]. 7H2O, (21 ), [(H2L)Cd (OOSO2)(H2O)3]. 2H2O, monobasic tridentate, (8), [(L)2HHg2((OAc)2 (H2O)6].H2O, (9), [(L)2Zn2(OAc)2(H2O)6].H2O, (10), [(L) 2ZZn2((OAc)2((H2OO)6]].H2OO, (11), [(L)Tl4(OAc)3 (H2O)6], (18), [(HL)(OH)Cr2(SO4)2(H2O)5]. H2O, (19), [(HL)3Ag3NO3], or dibasic tridentate, (14), [(L) Sr(Cl)20 ((H2 OO)24 ]], (20), [(L)3 CCu (H2 OO)2 ] ]. Molar conductances in DMF indicate that, the complexes are non-electrolyte. The ESR spectra of Cu(II) complexes (2), (3) and (20) at room temperature show axial type symmetry with g// > g-> 2.00, indicating a d(x2-y2) ground state with significant covalent bond character in an octahedral or square planar geometry. However, Cu(II) complexes (12) and (13) show isotropic type, indicating square planar and octahedral structure. Complexes Mn(II) (5) and Co(II) (6) show broad signals in the low field region indicating spin exchange interaction take place between metal(II) ion. Hg(II) complex (9), Tl(I) complex (11), Cr(III) complex (16), Cu(II) complex (17) and Cd(II) complex (21) showed potential antiproliferative activity where they showed inhibitory effect on breast carcinoma (MCF-7 cell line) in comparing with the standard drug.  相似文献   

18.
(±)-Muscone (3-methylcyclopentadecanone) (8) was synthesized from ethyl 6-methyl-8-oxopentadecanedioate (1) in a 31.9% over-all yield. Ethylene ketal (2) of 1 was cyclized to the acyloin mixture (3) by the acyloin condensation. Reduction of 3 gave 9,9-ethylenedioxy-7-methylcyclopentadecane-1,2-diol (4) which afforded 1,2-ditosyloxy derivative (5). By detosylation according to the Tipson-Cohen procedure, 5 was converted to 9,9-ethylenedioxy-7-methylcyclopentadec-1-ene (6) which was hydrogenated to 8.  相似文献   

19.
Various antimicrobial constituents of camu-camu fruit were isolated. Acylphloroglucinol (compound 1) and rhodomyrtone (compound 2) were isolated from the peel of camu-camu (Myrciaria dubia) fruit, while two other acylphloroglucinols (compounds 3 and 4) were obtained from camu-camu seeds. The structures of the isolated compounds were characterized by spectrophotometric methods. Compounds 1 and 4 were confirmed to be new acylphloroglucinols with different substituents at the C7 or C9 position of 2, and were named myrciarone A and B, respectively. Compound 3 was determined to be isomyrtucommulone B. This is the first report of the isolation of 3 from a natural resource. The antimicrobial activities of compounds 1, 3, and 4 were similar to those of 2, and the minimum inhibitory concentrations were either similar to or lower than that of kanamycin. These results suggest that the peel and seeds of camu-camu fruit could be utilized for therapeutic applications.  相似文献   

20.
为了解黄皮种子中的酰胺类生物碱及其杀线虫活性,运用多种色谱学及波谱学方法分离并鉴定了10个酰胺类生物碱,分别为:N-甲基桂皮酰胺(1),clausenalansamide A(2),3-dehydroxy-3-methoxyl-clausenalansamide A(3),clausenalansamide B(4),黄皮新肉桂酰胺B(5),N-(2-苯乙基)肉桂酰胺(6),2′-dehydroxy-2′-oxo-clausenalansamide B(7),lansamide-7(8),homoclausenamide(9),1,5-dihydro-5-hydroxy-1-methyl-3,5-diphenyl-2H-pyrrol-2-one(10)。其中,化合物3,7,10为新天然产物。首次对黄皮种子中的酰胺类生物碱2~8进行全齿复活线虫致死活性的测试,发现所测化合物均有致死活性,其中,化合物2,3,5和8有较强的致死活性,且均优于阳性对照除线磷,可为相关农药的研发提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号