共查询到20条相似文献,搜索用时 15 毫秒
1.
《Nucleosides, nucleotides & nucleic acids》2013,32(8-9):1545-1549
In human neuroblastoma cell lines (LAN5, SHEP and IMR32), mycophenolic acid (MPA) at concentrations (10? 7–10? 6 M) readily attainable during immunosuppressive therapy with mycophenolate mofetil (Cellcept), induces guanine nucleotide depletion leading to cell cycle arrest and apoptosis through a p53 mediated pathway (up‐regulation of p53, p21 and bax and down‐regulation of bcl‐2 and survivin). MPA‐induced apoptosis is also associated to a marked decrease of p27 protein. In the same cell lines MPA, at lower concentrations (50 nM), corresponding to the plasma levels of the active free drug during Cellcept therapy, induces differentiation toward the neuronal phenotype by causing a partial chronic guanine nucleotide depletion. MPA‐induced differentiation is not associated to p27 accumulation as occurs using retinoic acid. At a fixed concentration of MPA a higher percentage of apoptotic or differentiated cells is obtained when non dialysed serum substitutes for the dialysed one, due to the higher hypoxanthine concentration in the former (about 10 µM) leading to competition on HPRT‐mediated salvage of guanine. At hypoxanthine or oxypurinol concentrations higher than 1 µM (up to 100 µM) no further enhancement of MPA effects was obtained, in agreement with the recently described safety of the allopurinol‐mycophenolate mofetil combination in the treatment of hyperuricemia of kidney transplant recipients. The apoptotic effects of MPA do not appear to be significantly increased by the UDP‐glucuronosyltransferase inhibitor niflumic acid. 相似文献
2.
《Cell communication & adhesion》2013,20(5):423-440
Because of the known property of spontaneous regression in stage IVS of neuroblastoma all attempts are made to elucidate whether differentiation inducers possibly could be applied for neuroblastoma therapy. Here we examined the influence of retinoic acid (RA) in vitro on differentiation, proliferation and adhesion of 10 permanent and 4 primary cell lines as well as of several SCID-mouse tumour transplants. In general, after RA treatment morphologically different cell types which are characteristic for neuroblastoma cells have changed. N (neuronal)-type cells prolonged their neuronal processes, whereas S (epithelial, substrate-adherent, Schwann cell-like)-type cells lost their adherence to substratum and became apoptotic. Additionally, the reactions of all neuroblastoma cell lines with monoclonal antibodies against β-tubulin (for neuronal cells) and glial fibrillary acidic protein (for epithelial cells) were determined. The anti-proliferative effect of all-trans-RA as well as 13-eis-RA was more profound in S-type cells (up to 40% in primary cell lines). To elucidate the role of adhesion molecules during neuronal cell differentiation, we have analysed the adhesion of neuroblastoma cells on poly-D-lysin-precoated plates under RA influence. While N-type cells displayed an increased adhesion, all S-type cell lines as well as all primary cell lines exhibited a reduced adhesion (IMR-5 and IMR-32: p < 0.001; JW, SR and PM: p < 0.05). RA treatment increased predominantly the tested antigens (HCAM, ICAM-1, NCAM, PECAM-1, VCAM-1, cadherin, FGF-R, IGF-R, NGF-R, TGF-β/1, NF200, NF160, NF68, NSE, HLA-ABC) in all cell lines independently of their phenotypes (TGFβ/1: p < 0.001; NF68: p < 0.01; PECAM-1 and NGF-R: p < 0.05). In recultured SCID-mouse-passaged tumour cells antigens were down-regulated (FGF-R: p < 0.01), but increased again after RA influence (TGF-β/1: p < 0.05). In summary, the RA differentiation model demonstrates the possibility to interfere in cell adhesion and to diminish growth potential both in N-type as well as S-type neuroblastoma cells. 相似文献
3.
The Influence of Hypoxia on the Concentrations of Cyclic Nucleotides in the Rat Brain 总被引:1,自引:0,他引:1
Abstract: In order to study the influence of hypoxia on cyclic nucleotides in the brain, we reduced arterial Po, for 15–30 min in lightly anaesthetised and artificially ventilated rats to obtain values ranging from about 45 to about 10 mm Hg. In an additional group (arterial Po2 18–22 mm Hg), the tissue hypoxia was aggravated by moderate arterial hypotension (mean arterial blood pressure about 80 mm Hg). In all animals, electrocortical activity was recorded. Cyclic GMP concentrations in cerebral cortex were unchanged in all groups but one. In that group, in which tissue hypoxia was severe enough to induce a suppression-burst EEG pattern and a measurable reduction in the adenylate energy charge, cyclic GMP concentrations were slightly increased ( p < 0.05). Cyclic AMP concentrations remained unaltered at all degrees of hypoxia studied. It is concluded that changes in cyclic nucleotides in brain tissue occur first at such severe degrees of hypoxia of the duration studied that function and metabolism are profoundly altered. 相似文献
4.
Differentiation of Human Neuroblastoma Cells: Marked Potentiation of Prostaglandin E-Stimulated Accumulation of Cyclic AMP by Retinoic Acid 总被引:4,自引:2,他引:2
Victor C. Yu‡ Güinther Hochhaus Fu-Hsiung Chang† Mark L. Richards Henry R. Bourne † Wolfgang Sadée 《Journal of neurochemistry》1988,51(6):1892-1899
Neuroblastoma cells in culture contain low levels of cyclic AMP, a second messenger which plays a major role in neuronal maturation. In this study, human neuroblastoma cells, SK-N-SH-SY5Y, were induced to differentiate by treatment with either nerve growth factor (50 ng/ml), retinoic acid (10 microM), dibutyryl cyclic AMP (1 mM), or 12-O-tetradecanoylphorbol-13-acetate (0.1 microM), and the ability of several neurotransmitters or hormones to stimulate adenylyl cyclase was tested. Although all four differentiation factors caused morphological changes towards a neuronal phenotype, only retinoic acid dramatically enhanced cyclic AMP accumulation, specifically upon stimulation with prostaglandin E1 (PGE1). PGE2 was also active, but less potent, than PGE1, whereas the other cyclic AMP-stimulating agents tested were largely unaffected. Further, the rapid desensitization of the PGE1-cyclic AMP response observed in control cells after 20 min of PGE1 exposure did not occur in retinoic acid-treated cells, and the EC50 values for PGE1 were reduced from approximately 240 to 14 nM after retinoic acid treatment. The increased sensitivity to PGE was associated with an increase of high-affinity PGE1 binding sites, whereas the Gs coupling proteins and adenylyl cyclase were not measurably affected. A similar enhancement of the PGE1-cyclic AMP response by retinoic acid was also observed in two additional human neuroblastoma cell lines tested, Kelly and IMR-32, suggesting that up-regulation of the prostaglandin response by retinoic acid is common among neuroblastoma cells.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Retinoic Acid Rapidly Decreases Phosphatidylinositol Turnover During Neuroblastoma Cell Differentiation 总被引:1,自引:0,他引:1
Phosphatidylinositol (PI) turnover has recently been implicated in the regulation of cell proliferation and transformation. We have investigated its role in differentiation using LAN-1 cells, a human neuroblastoma cell line that can be induced to differentiate along the neuronal pathway by retinoic acid (RA). We have found that treatment of LAN-1 cells with RA is followed by a rapid decrease of inositol phospholipid metabolism, using myo-[1,2-3H]inositol or [1(3)-3H]glycerol. No changes were observed in both [3H]inositol and [3H]glycerol uptake within 24 h of RA treatment. Decreased incorporation of the metabolic precursor into PI 4-monophosphate and PI 4,5-bisphosphate occurred within 1 h of RA treatment. No changes were seen in the specific radioactivity of the precursor pools up to 1 h of treatment with RA. Analysis of labeled PI metabolites from prelabeled cells indicated a rapid decrease of inositol 1,4,5-trisphosphate and 1,2-diacylglycerol content within 1 min of induction of LAN-1 cell differentiation. These findings constitute the earliest reported events in neuroblastoma cell differentiation. 相似文献
6.
Abstract: The relative amounts of the different enolase isozymes present in neuroblastoma cells change during differentiation. When differentiation is induced by low serum in the presence of DMSO (dimethyl sulfoxide), there is a 50% decrease in the concentration of enolase activity associated with the form αα, and an increase in the activity associated with the γ-containing isozymes (αγ plus γγ); in the absence of DMSO, there is no decrease in αα or in total enolase activity. In order to study the mechanism of the changes in αα, cells differentiated with low serum with and without DMSO were compared. Measurements of the concentration of the α antigen by microcomplement fixation and by immunotitration demonstrate that the decreased enolase activity in DMSO cells is due to a decreased concentration of the α antigen. Measurements of the relative rate of synthesis of the antigen show that the decreased concentration of the α antigen is due to a decreased rate of synthesis. Enolase in differentiated cells is sufficiently stable (t1/2 > 100 h) that a comparison of the relative rates of degradation has not been possible. The decreased synthesis of the α subunit of enolase that occurs under these conditions appears to be a useful model system for studying the de-expression of the α gene that occurs in vivo during neuronal differentiation. 相似文献
7.
1. The ubiquitin–proteasome pathway is involved in a variety of cellular functions in mammalian cells. The role of proteasome, however, in the course of cell differentiation is not well characterized. We hypothesized that proteasome activity might be essential during neuronal cell differentiation.2. To investigate the role of proteasome during neuronal differentiation, we made use of a murine neuroblastoma cell line (NBP2) that terminally differentiates into mature neurons upon elevation of the intracellular level of adenosine 3,5-cyclic monophosphate (cAMP). To monitor proteasome activity in NBP2 cells, we integrated an expression cassette~for a short-lived green fluorescent protein (d2EGFP) into these cells, which were designated as NBP2-PN25. When NBP2-PN25 cells were treated with a proteasome inhibitor, lactacystin or MG132, a dose-dependent increase in the constitutive levels of d2EGFP expression was detected.3. We also found that proteasome inhibition by lactacystin during the cAMP-induced differentiation of NBP2-PN25 cells triggered cell death. Both lactacystin and cAMP induction reduced the expression of mRNA for the differentiation-associated genes, such as N-mycand cyclin B1. While cAMP-inducing agents decreased the level of N-myc and cyclin B1 proteins, lactacystin increased the level of these proteins.4. Our data suggest that a reduced level of N-myc and cyclin B1 proteins is critical to commence differentiation, and this can be blocked by a proteasome inhibitor, leading to cell death. Concomitant induction of differentiation and proteasome inhibition, may, therefore, be potentially useful for the treatment of human neuroblastomas. 相似文献
8.
Neurite Differentiation Is Modulated in Neuroblastoma Cells Engineered for Altered Acetylcholinesterase Expression 总被引:4,自引:2,他引:4
Abstract: Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level ( p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation. 相似文献
9.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8-10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis. 相似文献
10.
《Chronobiology international》2013,30(3):155-160
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8–10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis. 相似文献
11.
Annette C. Dolphin John A. Detre Doris J. Schlichter Angus C. Nairn Hermes H. Yeh† Donald J. Woodward† Paul Greengard 《Journal of neurochemistry》1983,40(2):577-581
The levels of cAMP-dependent protein kinase (type I), or cGMP-dependent protein kinase, or protein I, and of a 23,000 MW substrate for the cGMP-dependent protein kinase were measured in cerebella from normal rats and in the cerebella from rats in which a selective loss of interneurons in the cerebellar cortex had been produced by X-irradiation. A decrease was observed in the concentrations of cAMP-dependent protein kinase and of protein I, whereas an increase was observed in the concentrations of cGMP-dependent protein kinase and of the 23,000 MW substrate. The data, taken together with the results of other studies, support the interpretation that cAMP-dependent protein kinase and protein I are distributed throughout the cerebellum, but that cGMP-dependent protein kinase and the 23,000 MW substrate are highly concentrated in Purkinje cells. 相似文献
12.
Protein Carboxyl Methylation Increases in Parallel With Differentiation of Neuroblastoma Cells 总被引:2,自引:3,他引:2
Abstract: Cells of mouse neuroblastoma clone N1E-115 in the confluent phase of growth can catalyze the formation of endogenous protein carboxyl methyl esters, using a protein carboxyl methylase and membrane-bound methyl acceptor proteins. The enzyme is localized predominantly in the cytosol of the cells and has a molecular weight of about 20,000 daltons. Treatment of the cells with dimethylsulfoxide (DMSO) or hexamethylenebisacetamide (HMBA), agents that induce morphological and electrophysiological differentiation, results in a marked increase in protein carboxyl methylase activity. Maximal levels are reached 6–7 days after exposure to the agents, a time course that closely parallels the development of electrical excitability mechanisms in these cells. Serum deprivation also causes neurite outgrowth but does not enhance electrical excitability or enzyme activity. The capacity of membrane-bound neuroblastoma protein(s) to be carboxyl methylated is increased by the differentiation procedures that have been examined. However, the increase in methyl acceptor proteins induced by DMSO or HMBA is the largest and its time course parallels electrophysiological differentiation. In contrast, serum deprivation induced a small increase that reached maximal levels within 24 h. The data suggest that increased protein carboxyl methylation is a developmentally regulated property in neuroblastoma cells and that at least two groups of methyl acceptor proteins are induced during differentiation: a minor group related to morphological differentiation and a major group that may be related to ionic permeabilitys mechanisms of the excitable membrane. 相似文献
13.
Skeletal Muscle Proteins Stimulate Cholinergic Differentiation of Human Neuroblastoma Cells 总被引:2,自引:1,他引:1
Extracts of rat skeletal muscle contain substances that enhance the development of choline acetyltransferase (ChAT) in the cholinergic human neuroblastoma cell line LA-N-2. The ChAT enhancing activity in muscle extract was purified to homogeneity by preparative gel electrophoresis and reverse-phase HPLC. The active factor is biochemically and immunologically identical to ChAT development factor, (CDF), the skeletal muscle factor that enhances ChAT activity in enriched cultures of embryonic rat motoneurons and rescues motoneurons from naturally occurring cell death in vivo. CDF increases the specific ChAT activity of LA-N-2 cells fivefold after 6 days in culture, but does not affect their growth or metabolic activity. Basic fibroblast growth factor also increases ChAT activity in LA-N-2 cells and its effect is additive with that of CDF. In contrast, neither insulin-like growth factor-1, epidermal growth factor, nor nerve growth factor affected the ChAT activity of LA-N-2 cells. Our study demonstrates for the first time that CDF can directly affect the development of neuronal properties in a homogeneous population of cells, and that the effects of CDF are separate from those of other types of trophic factors. 相似文献
14.
Extracellular Calcium-Induced Neuroblastoma Cell Differentiation: Involvement of Phosphatidylinositol Turnover 总被引:2,自引:3,他引:2
Christian P. Reboulleau 《Journal of neurochemistry》1986,46(3):920-930
The rat CNS neuroblastoma B50 cell line is known to differentiate on addition of 1 mM dibutyryl cyclic AMP or on withdrawal of serum. In this report it is shown that high levels of extracellular calcium (10-25 mM) cause neurite extension, an important component of morphological differentiation. Stimulation of calcium influx with the ionophore A 23187 or blockade of calcium efflux with lanthanum are less efficient than extracellular calcium in stimulating neurite extension. These data suggest that intracellular calcium is not sufficient to cause full expression of a calcium-dependent differentiated state. Furthermore, phosphatidylinositol turnover is sharply altered as early as 1 h after addition of calcium to the medium while cyclic nucleotide levels remain unaffected. This suggests that activation of the phosphatidylinositol second-messenger system by calcium at the level of the cell membrane is the initial step in the cascade of events leading to neurite extension. Later events include a decrease in DNA synthesis (6-10 h after addition of calcium), and increase in intracellular calcium levels (12-24 h after calcium addition) concurrent with neurite extension. The intracellular increase in calcium levels is facilitated by synergistic action of 1 mM dibutyryl cyclic AMP with high external calcium (10-25 mM). This combined treatment results in a more complex pattern of neurite formation characterized by many synaptic-like junctions; this pattern is not obtained when either dibutyryl cyclic AMP or calcium is used as sole inducer. 相似文献
15.
Development of Sodium Channel Protein During Chemically Induced Differentiation of Neuroblastoma Cells 总被引:1,自引:0,他引:1
We have previously shown that the [3H]saxitoxin binding site of the sodium channel is expressed independently of the [125I]scorpion toxin binding site in chick muscle cultures and in rat brain. In the present work, we studied the development of the sodium channel protein during chemically induced differentiation of N1E-115 neuroblastoma cells, using [3H]saxitoxin binding, [125I]scorpion toxin binding, and 22Na uptake techniques. When grown in their normal culture medium, these cells are mostly undifferentiated, bind 90 +/- 10 fmol of [3H]saxitoxin/mg of protein and 112 +/- 14 fmol of [125I]scorpion toxin/mg protein, and, when stimulated with scorpion toxin and batrachotoxin, take up 70 +/- 5 nmol of 22Na/min/mg of protein. Cells treated with dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) differentiate morphologically within 3 days. At this time, the [3H]saxitoxin binding, the [125I]scorpion toxin binding, and the 22Na uptake values are not very different from those of undifferentiated cells. With subsequent time in DMSO or HMBA, these values continue to increase, a result indicating that the main period of sodium channel expression occurs well after the cells have assumed the morphologically differentiated state. The data indicate that the expression of sodium channels and morphological differentiation are independently regulated neuronal properties, that the attainment of morphological differentiation is necessary but not in itself sufficient for full expression of the sodium channel proteins, and that, in contrast to the chick muscle cultures and rat brain, the [3H]saxitoxin site and [125I]scorpion toxin site appear to be coregulated in N1E-115 cells. 相似文献
16.
《Nucleosides, nucleotides & nucleic acids》2013,32(8-9):1555-1558
In order to examine the cyclic nucleotides (cGMP) role in carcinoma growth and invasivity. We analyzed two cell lines, LSHT29 and 17GT, and tissues in patients with carcinoma and malignant tissues with (N+) and without (N?) lymph node metastases. Higher cGMP levels in pathological samples suggest a strong correlation between intracellular cGMP concentration and carcinoma progression. 相似文献
17.
Judith A. Kirshner George J. Markelonis Stephen R. Max 《Journal of neurochemistry》1986,46(3):817-821
We investigated the effects of a number of experimental perturbations on choline acetyltransferase (ChAT) in a cholinergic mouse neuroblastoma cell line (S-20Y). ChAT specific activity increased by 4.5-fold during growth, suggesting that enzyme activity is dependent on increased cell density. This was confirmed by assessing enzyme activity at differential initial seeding densities. ChAT activity was also markedly enhanced by 1 mM dibutyryl cyclic-3',5'-AMP (dBcAMP), an effect that was blocked by cycloheximide. Confirmation of the dBcAMP effect was achieved with forskolin, a compound known to enhance intracellular cyclic AMP; forskolin (100 microM) caused a significant increase in ChAT activity. After a 20-h latent interval ChAT activity was also enhanced significantly by cytosine arabinoside. The common element in these diverse effects on ChAT activity may be cessation of cell division, although cell-cell interactions at the level of the cell membrane may also be important in the control of ChAT in S-20Y. 相似文献
18.
Bernardo Yusta Javier Ortiz-Caro Angel Pascual Ana Aranda 《Journal of neurochemistry》1988,51(6):1808-1818
We have compared the effects of forskolin, N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP, Bt2-cAMP), and butyrate on several aspects of neuroblastoma cell physiology. The morphology of Neuro 2A cells was similar after incubation with forskolin and Bt2-cAMP, which caused extensive neurite outgrowth, whereas in the presence of butyrate some rudimentary neurites were formed but they were not nearly as extensive. All compounds produced a dose-dependent inhibition of cell proliferation, but the effect of Bt2-cAMP was more marked than that caused by forskolin, thus showing that the effect of Bt2-cAMP is due partially to the butyrate released. Acetylcholinesterase activity was lower in the cells incubated with butyrate or Bt2-cAMP than in untreated cells or in forskolin-treated cells. This suggests that cyclic AMP does not play a role in the regulation of this enzyme. Bt2-cAMP produced histone acetylation, a well-known effect of butyrate in cultured cells, whereas forskolin did not affect this modification. Consequently, the levels of thyroid hormone receptor, a nuclear protein whose concentration is regulated by butyrate through changes in acetylation of chromatin proteins, were decreased in cells incubated with Bt2-cAMP or butyrate, but were unaffected by forskolin. Butyrate elevated the concentration of histone H1(0), a protein that increases in neuroblastoma cells as a result of different treatments that block cell division. The concentration of H1(0) in the cells treated with Bt2-cAMP was at a level intermediate between that found after treatment with butyrate and with forskolin. The present results clearly indicate that some of the effects of Bt2-cAMP on neuroblastoma cells can be attributed to the butyryl moiety of this compound rather than to the cyclic nucleotide itself. 相似文献
19.
G Fanò G Della Torre G Menchetti T Secca V Marsili 《Cell biochemistry and function》1984,2(2):119-124
This study was conducted to determine the possible correlations between cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanine monophosphate (cGMP), and haemoglobin (Hb) concentration in nucleated cell suspensions of rabbit bone marrow incubated with erythropoietin (Ep). The levels of cAMP and cGMP were measured following the addition of different Ep concentrations to the suspensions. The Hb concentration was also measured in suspensions treated with Ep, dibutyryl cAMP (db-cAMP) or dibutyryl cGMP (db-cGMP), respectively. The following results were obtained: (1) upon the addition of 1 IU ml-1 Ep, an increase of cAMP levels was related to an increase in Hb concentration; while a decrease of Hb concentration was related to an increase of cGMP levels obtained when 0.1 IU ml-1 Ep was present in the incubation mixture. (2) A mimetic effect on Hb concentration was obtained upon the addition of db-cAMP or db-cGMP to the suspensions. (3) A quantitative correlation was found between the cAMP/cGMP ratio and Hb levels in cellular suspensions. This rapport was reviewed with respect to the controls as a decrease in Hb concentration when the ratio is less than one and an increase in Hb concentration when the ratio is greater than one. 相似文献
20.
Mouse NB2a/dl neuroblastoma cells elaborate axonal neurites in response to various chemical treatments including dibutyryl cyclic AMP and serum deprivation. Hirudin, a specific inhibitor of thrombin, initiated neurite outgrowth in NB2a/dl cells cultured in the presence of serum; however, these neurites typically retracted within 24 h. The cysteine protease inhibitors leupeptin and N-acetyl-leucyl-leucyl-norleucinal (CI; preferential inhibitor of micromolar calpain but also inhibits millimolar calpain) at 10(-6) M considerably enhanced neurite outgrowth induced by serum deprivation, but could not induce neuritogenesis in the presence of serum. A third cysteine protease inhibitor, N-acetyl-leucyl-leucyl-methional (CII; preferential inhibitor of millimolar calpain but also inhibits micromolar calpain), had no detectable effects by itself. Cells treated simultaneously with hirudin and either leupeptin, CI, or CII elaborated stable neurites in the presence of serum. Cell-free enzyme assays demonstrated that hirudin inhibited thrombin but not calpain, CI and CII inhibited calpain but not thrombin, and leupeptin inhibited both proteases. These results imply that distinct proteolytic events, possibly involving more than one protease, regulate the initiation and subsequent elongation and stabilization of axonal neurites. Since the addition of exogenous thrombin or calpain to serum-free medium did not modify neurite outgrowth, the proteolytic events affected by these inhibitors may be intracellular or involve proteases distinct from thrombin or calpain. 相似文献