首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver immunopathologic mechanisms during hepatotropic infection, malignant transformation, and autoimmunity are still unclear. Establishing a chimeric mouse with a reconstituted liver and immune system derived from a single donor across species is critical to study regional donor immune responses in recipient liver. Using a strain of mice deficient in tyrosine catabolic enzyme fumarylacetoacetate hydrolase (fah -/-) and bone marrow transplantation (BMT), we reconstituted the donor''s hepatocytes and immune cells across host species barrier. Syngeneic, allogeneic or even xenogeneic rat BMT rescued most recipient fah-/- mice against liver failure by donor BM-derived FAH+ hepatocytes. Importantly, immune system developed normally in chimeras, and the immune cells together with organ architecture were intact and functional. Thus, donor BM can across host species barrier and concurrently reconstitutes MHC-identical response between immune cells and hepatocytes, giving rise to a new simple and convenient small animal model to study donor''s liver immune response in mice.  相似文献   

2.
We evaluated humoral and cellular functions of the immune system of Swiss-Webster mice exposed to 60-Hz electric fields at 100 kV/m. No significant differences were observed in primary antibody response to keyhole limpet hemocyanin (precipitating antibody levels) between exposed (30 or 60 days) and control mice, nor were there significant changes in mitogen-stimulation response of spleen cells from mice similarly exposed for 90 or 150 days when compared to sham-exposed animals.  相似文献   

3.
The action on intracellular cyclic AMP (cAMP) of therapeutically used 4000-Hz electric fields was investigated and compared with 50-Hz data. Cultured mouse fibroblasts were exposed for 5 minutes to 4000-Hz sine wave internal electric fields between 3 mV/m and 30 V/m applied within culture medium. A statistically significant decrease in cellular cAMP concentration relative to unexposed cells was observed for fields higher than 10 mV/m. The drop in cAMP was most pronounced at lower field strengths (71 % of controls at 30 mV/m) and tended to disappear at higher field strengths. An increase of cAMP content was observed with 50-Hz electric fields, as was also the case when 4000-Hz fields were modulated with certain low frequencies.  相似文献   

4.
Larvae of the Northern pine processionary moth (Thaumetopoea pinivora, TP) carry microscopic needles (setae), which by penetrating skin and mucous membranes, may cause inflammatory/immune derived symptoms in man. In the present study the stimulatory effects of setae on human blood lymphocytes in vitro was investigated. Blood mononuclear cells were separated from venous blood or buffy coat of ten healthy individuals, six previously exposed to setae and four with no known exposure. Lymphoproliferation was measured as uptake of 3H-thymidine. Setae were prepared from TP larvae. Setae and saline setae extracts stimulated proliferation of T-lymphocytes in the presence of monocytic cells. Stimulation was pronounced in cells from persons who had been exposed to setae, and weak in cells from non-exposed donors. Chitin also induced lymphocyte proliferation in most donors, but to a lesser extent and independently of donor''s previous exposure to setae. In conclusion, setae contain molecules that in the presence of monocytes activate human T-lymphocytes to proliferation. The antigenic nature of stimulatory molecules was supported by the significantly stronger lymphocyte response in persons previously exposed to setae than in non-exposed donors. The nature of such molecules remains to be defined.  相似文献   

5.
The aim of this study was to evaluate and compare the influence of 864 MHz and 935 MHz radiofrequency/microwave (RF/MW) fields on the growth, colony-forming ability, and viability of V79 cells (continuous line). Cell samples with 1 x 10(4) V79 cells each, were exposed to continuous wave frequencies of 864 MHz and 935 MHz for 1, 2 and 3 hours. Exposed samples were matched with unexposed control samples. Specific absorption rate (SAR) was 0.08 W/kg for the 864 MHz or 0.12 W/kg for the 935 MHz field. Cell growth and viability were determined by counting cells every day for five days after exposure. Colony-forming ability was assessed by counting colonies seven days after exposure. The growth of the 864 MHz-irradiated cells was significant after two- and three-hour exposure 72 hours after irradiation (p < 0.05). The similar was observed 72 hours after exposure for cells exposed to 935 MHz microwaves for three hours (p <0.05). Colony-forming ability and cell viability in V79 cells exposed to 864 MHz or 935 MHz microwaves did not significantly differ from control cells. The two applied RF/MW fields showed similar effects on the growth, colony-forming ability and viability of V79 cells. Cell growth impact was time-dependent for both fields.  相似文献   

6.
We investigated the effects of nanosecond pulse electric fields (nsPEFs) on Jurkat and PANC1 cells, which are human carcinoma cell lines, in the presence of Tween 80 (T80) at a concentration of 0.18?% and demonstarted an enhanced killing effect. We used two biological assays to determine cell viability after exposing cells to nsPEFs in the presence of T80 and observed a significant increase in the killing effect of nsPEFs. We did not see a toxic effect of T80 when cells were exposed to surfactant alone. However, we saw a synergistic effect when cells exposed to T80 were combined with the nsPEFs. Increasing the time of exposure for up to 8?h in T80 led to a significant decrease in cell viability when nsPEFs were applied to cells compared to control cells. We also observed cell type–specific swelling in the presence of T80. We suggest that T80 acts as an adjuvant in facilitating the effects of nsPEFs on the cell membrane; however, the limitations of the viability assays were addressed. We conclude that T80 may increase the fragility of the cell membrane, which makes it more susceptible to nsPEF-mediated killing.  相似文献   

7.
Escherichia coli JM83 {F? ara Δ(lac-proAB) rpsL [?80dΔ(lacZ)M15]} in midlog growth phase at 30 °C were exposed to 60 Hz sinusoidal magnetic field of 3 mT of nonuniform diverging flux, inducing a nonuniform electric field with a maximum intensity of 32 μV/cm using an inductor coil. Exposed and unexposed control cells were maintained at 30.8 ± 0.1 °C and 30.5 ± 0.1 °C, respectively. Quadruplicate samples of exposed and unexposed E. coli cells were simultaneously radiolabeled with 35S-L-methionine at 10 min intervals over 2 hr. Radiochemical incorporation into proteins was analyzed via liquid scintillation counting and by denaturing 12.5% polyacrylamide gel electrophoresis. The results showed that E. coli exposed to a 60 Hz magnetic field of 3 mT exhibited no qualitative or quantitative changes in protein synthesis compared to unexposed cells. Thus small prokaryotic cells (less than 2 μm × 0.5 μm) under constant-temperature conditions do not alter their protein synthesis following exposure to 60 Hz magnetic fields at levels at 3 mT. © 1994 Wiley-Liss, Inc.  相似文献   

8.
In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles.  相似文献   

9.
目的:研究显示射频电磁场与白内障的发生关系密切,为了评价晶状体上皮细胞在射频电磁场诱导的白内障发生中的作 用,本实验探讨了1950 MHz射频电磁场暴露对人眼晶状体上皮细胞株(SRA01/04)细胞周期与凋亡的影响。方法:将处于对数生 长期的SRA01/04 细胞暴露或假暴露于频率为1950 MHz,比吸收率(SAR)为2.79 W/kg 的射频电磁场中,每天暴露1 h,每周暴露 5 天,连续暴露4 周。暴露结束后立即收集细胞,显微镜下观察细胞形态变化,噻唑蓝(MTT)法检测细胞存活力,流式细胞仪 (FCM)检测细胞周期与凋亡。结果:与假辐照组相比,暴露组细胞形态未见明显变化;细胞存活力、细胞周期分布及细胞凋亡率亦 无显著改变(P>0.05)。结论:1950 MHz射频电磁场暴露4 周对SRA01/04 细胞的形态、活力、周期以及凋亡均无明显影响,提示在 本实验条件下1950 MHz 射频电磁场不会诱发白内障的发生。  相似文献   

10.
Forces shaping an individual's phenotype are complex and include transgenerational effects. Despite low investment into reproduction, a father's environment and phenotype can shape its offspring's phenotype. Whether and when such paternal effects are adaptive, however, remains elusive. Using three‐spined sticklebacks in controlled infection experiments, we show that sperm deficiencies in exposed males compared to their unexposed brothers functionally translated into reduced reproductive success in sperm competition trials. In non‐competitive fertilisations, offspring of exposed males suffered significant costs of reduced hatching success and survival but they reached a higher body condition than their counterparts from unexposed fathers after experimental infection. Interestingly, those benefits of paternal infection did not result from increased resistance but from increased tolerance to the parasite. Altogether, these results demonstrate that parasite resistance and tolerance are shaped by processes involving both genetic and non‐genetic inheritance and suggest a context‐dependent adaptive value of paternal effects.  相似文献   

11.
Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1–10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.  相似文献   

13.
Studies of low electric fields (LEFs) effects on the permeability of the cell membrane are of great interest in molecular medicine. Electroendocytosis is a novel technique depends on using LEFs to incorporate macromolecules as anticancer drugs or genes into the cells. There are wide debates about the optimum electric conditions for electroendocytosis. In this article, Ehrlich tumor tissues were exposed to different LEFs voltages and frequencies in vitro. Dielectric properties before and after the exposure were determined. The results indicated that the exposed groups have significant high permittivity and conductivity compared to unexposed group, as well as having significant low impedance. The results indicated that dielectric measurements can be used to indicate the efficiency of electroendocytosis that as permittivity and conductivity of cell membranes increase, more molecules can passed into the cells. It was also indicated that, as the pulse amplitude increases, the LEFs influence increases, while changing pulse frequency has no obvious effect on dielectric properties of Ehrlich tumor.  相似文献   

14.
Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats. The findings are generally consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations.  相似文献   

15.
Association between extremely low frequency electromagnetic fields (ELF-EMF) and human cancers is controversial, and few studies have been conducted on their influence on oncogenic viruses. We studied the effects of 1 mT, 50 Hz sine waves, applied for 24-72 h, on Kaposi's sarcoma (KS)-associated herpesvirus (KSHV or HHV-8) in BCBL-1, a latently infected primary effusion lymphoma (PEL) cell line. ELF-EMF exposure did not affect the growth and viability of BCBL-1 cells, either stimulated or not with TPA. The total amount of KSHV DNA detected in ELF-EMF exposed cultures not stimulated with TPA did not differ from that of the unexposed controls (P = ns). However, in the presence of TPA stimulation, total KSHV DNA content was found higher in ELF-EMF exposed than in control BCBL-1 cultures (P = .024) at 72 h exposure, but not earlier. Viral DNA increase significantly correlated with increased mean fluorescence intensity/cell for the lytic antigen gp K8.1A/B (P < .01), but not with percentage of gp K8.1A/B-positive cells or of cells containing virions. Viral progeny produced under ELF-EMF exposure consisted mainly of defective viral particles.  相似文献   

16.
The sources for the effects of electromagnetic fields (EMFs) have been traced to time-varying as well as steady electric and magnetic fields, both at low and high to ultra high frequencies. Of these, the effects of low-frequency (50/60 HZ) magnetic fields, directly related to time-varying currents, are of particular interest as exposure to some fields may be commonly experienced. In the present study, investigations have been carried out at low-level (mT) and low-frequency (50 Hz) electromagnetic fields in healthy human volunteers. Their peripheral blood samples were exposed to 5 doses of electromagnetic fields (2,3,5,7 and 10mT at 50 Hz) and analysed by comet assay. The results were compared to those obtained from unexposed samples from the same subjects. 50 cells per treatment per individual were scored for comet-tail length which is an estimate of DNA damage. Data from observations among males were pooled for each flux density for analysis. At each flux density, with one exception, there was a significant increase in the DNA damage from the control value. When compared with a similar study on females carried out by us earlier, the DNA damage level was significantly higher in the females as compared to the males for each flux density.  相似文献   

17.
Negative dielectrophoretic forces can effectively be used to trap cortical rat neurons. The creation of dielectrophoretic forces requires electric fields of high non-uniformity. High electric field strengths, however, can cause excessive membrane potentials by which cells may unrecoverably be changed or it may lead to cell death. In a previous study it was found that cells trapped at 3 Vtt/14 MHz did not change morphologically as compared to cells that were not exposed to the electric field. This study investigates the viability of fetal cortical rat neurons after being trapped by negative dielectrophoretic forces at frequencies up to 1 MHz. A planar quadrupole micro-electrode structure was used for the creation of a non-uniform electric field. The sinusoidal input signal was varied in amplitude (3 and 5 Vtt) and frequency (10 kHz-1 MHz). The results presented in this paper show that the viability of dielectrophoretically trapped postnatal cortical rat cells was greatly frequency dependent. To preserve viability frequencies above 100 kHz (at 3 Vtt) or 1 MHz (5 Vtt) must be used.  相似文献   

18.
The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are found in the periventricular region of the CNS. Accordingly, it is essential to understand the mechanisms that promote, guide, and enhance NPC migration. Our work focuses on the utilization of direct current electric fields (dcEFs) to promote and direct NPC migration - a phenomenon known as galvanotaxis. Endogenous physiological electric fields function as critical cues for cell migration during normal development and wound repair. Pharmacological disruption of the trans-neural tube potential in axolotl embryos causes severe developmental malformations1. In the context of wound healing, the rate of repair of wounded cornea is directly correlated with the magnitude of the epithelial wound potential that arises after injury, as shown by pharmacological enhancement or disruption of this dcEF2-3. We have demonstrated that adult subependymal NPCs undergo rapid and directed cathodal migration in vitro when exposed to an externally applied dcEF. In this protocol we describe our lab''s techniques for creating a simple and effective galvanotaxis assay for high-resolution, long-term observation of directed cell body translocation (migration) on a single-cell level. This assay would be suitable for investigating the mechanisms that regulate dcEF transduction into cellular motility through the use of transgenic or knockout mice, short interfering RNA, or specific receptor agonists/antagonists.  相似文献   

19.
There have been a number of reports in the literature concerning growth-related changes in various animal species exposed to high-strength electric fields. Many of the laboratories reporting such effects have not documented and controlled for the secondary factors that are associated with generating high-strength electric fields (ie, corona, ozone, harmonic distortion, cage vibration, spark discharge). We have designed an exposure system in which we eliminated or minimized these secondary factors, therefore enabling us to examine only the effects of electric fields per se. Sprague-Dawley rats and Swiss-Webster mice were exposed to 60-Hz electric fields at kV/m for up to four months. In 17 individual experiments, we found a greater number of experiments in which the exposed rats had lower body weights than controls. This trend was not evident in data obtained from 14 individual mouse experiments. In more exhaustive growth studies, we found no significant differences in body weights, organ weights, or O2 consumption between exposed and sham-exposed controls. Our failure to detect any major changes in growth was probably the result of eliminating or minimizing the secondary factors associated with electric field exposure.  相似文献   

20.
A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. An examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. The thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; during exposure to electric field 24 hr before u.v. irradiation; 24 hr after u.v. irradiation; and up to 48 hr continuously after u.v. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号